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Abstract

We evaluate the risk aspects of a complex portfolio of real options to switch or divest in a duopoly
context. After summarizing the basic model, covering three sequences, four thresholds, and seven
strategic and rival options, we look at four risk elements: delta, vega, rho, and epsilon, the
conventional option Greeks. The value function of both the leader and follower is most sensitive
to revenue variations (delta), which we view in terms of sensitivities (to incremental, and
percentage changes) and partial derivatives. We ask what are the plausible and appropriate risk
avoidance actions for each of these risk exposures. We are tentative about which risk
measurements are most useful for risk managers of these complex real option portfolios, except
that the risks of the present value of operations is unlikely to be the dominate real concern.

! Corresponding author



Mutually Exclusive Rival Options: Risk Evaluation

1. Introduction

We investigate the plausible risk elements regarding the choice of divesting or switching to a lower
operating cost technology in adjusting to a declining market in a game-theoretic world of two
comparable rivals. Following the approach of Adkins et al. (2023) (MERO) there are three
significant sequential changes over three regimes (stages) in this duopoly game?: (i) market share
changes arising from the individual player actions, (ii) revenue changes due to a declining market
size and a stochastically evolving price, and (iii) revenue changes arising from investing in an
alternative technology having a more appropriate cost structure.> The divest and switch options
are mutually-exclusive (joint). While the first-mover has a salvage value advantage, the second-
mover has a temporary market share advantage after the leader downsizes. There are partly
analytical solutions to the eleven equations in the model, including four action thresholds which
form the boundaries for the five regimes. We evaluate the overall risk (change in the value
function) for each firm, as inputs change, but the specific rival and standard option values have

complex risk profiles.

Appropriate extensions to the MERO are to propose management actions (hedging, games) at each
stage, with the current and prospective parameter values. After covering the appropriate areas of
risk identification, measurement and evaluation, the plausible actions include dealing with external
parties or internal rivals. External or exogenous such as the derivative markets, governments,
regulators, and the legal system offer several fields for actions.* Actions involving internal
(endogenous) actual or potential rivals include collusion, industry marketing programs, and pooled
risk (both price and quantity) sharing. These actions are focused on the value functions (total value
for the L or F), which consist of the value of operations, and the value of the respective portfolio

of options. As a side issue, the value of each option is also considered separately. Note that each

2 The complete model derivation is shown in Appendix B. Appendix A shows the assumed base case parameter
values and model solutions.

3 Many other configurations of market shares, salvage values, and revenue and operating cost changes can be
designed, some suitable for our specific model, others requiring model redesign, appropriate for future research.
4 Borenstein, S., J. Bushnell and E. Mansura (2023), “The Economics of Electricity Reliability”, Journal of Economic
Perspectives, 37:4, page 196, price risk “can provide a stronger incentive for retailers to procure, or hedge, their
energy in forward markets. Some retailers physically hedge this risk by vertically integrating between generation
and retailing functions. Others, however, benefit from bankruptcy laws by offering a fixed retail price and not
hedging.”



risk (of a downside value loss) might also be considered an upside opportunity. Probably a single

measurement like a “real value at risk” is not sufficient to view these risks/opportunities.

The switch option is treated like a call option and the divest option is treated like a put option. The
consideration of such alternative options was first raised by Dias (2004) (who provided solutions
using finite differences) and developed further by Décamps et al. (2006) for a monopoly market.
Décamps et al. (2006) study irreversible investments in alternative projects and show that when
firms hold the option to switch from a smaller scale to a larger scale project, a hysteresis region
between the investment region can persist even if the uncertainty of the output price increases.
Nishihara and Ohyama (2008) model R&D competition in alternative technologies. There are
other applications of the theory of mutually exclusive options, such as Bakke et al. (2016), and of
real competitive strategies, such as Comincioll et al. (2020), but apparently not joint competitive
strategies. Adkins et al. (2022, 2023) extend the mutually exclusive option framework to a duopoly

market, thus considering the effect of competition on thresholds and values.

Joaquin and Butler (2000) consider the first mover advantage of lower operating costs. Tsekrekos
(2003) suggests both temporary and pre-emptive permanent market share advantages for the leader
in a sequential investment pattern. Paxson and Pinto (2003) model a leader with an initial market
share advantage, which then evolves as new customers arrive (birth) and existing customers depart
(death)®. Paxson and Melmane (2009) provide a two-factor model where the leader starts with a
larger market share, applied to show that (by foresight) Google was likely to be undervalued
compared to Yahoo at the Google IPO. Bobtcheff and Mariotti (2013) consider a pre-emptive
game of two innovative competitors, whose existence may be revealed only by first mover
investment. Azevedo and Paxson (2014) review the literature on developing such real option

games.

Perhaps advances in technology will inspire first movers to switch technology. But what if the first
mover experiences a temporary loss in market share (or editors who resist articles like this being

composed by Claude rather than by aging professors who are slow but never “hallucinate)?® Due

5> Appendix G reviews the innovations in these two articles regarding some analytical partial derivatives (delta, and
alpha), and discussions of the respective leader/follower choices and actions.

6 Korinek, A. (2023), “Generative Al for Economic Research: Use Cases and Implications for Economists”, Journal of
Economic Literature, 61: 1281-1317.



to both pollution concerns and competition from natural gas, some coal power plants are being
shut down, possibly lacking cheaper emission control. Given the possible global warming, some
U.S. states, such as Arizona and California, have experienced water shortages, and are considering
alternative actions (limiting the use of water for agriculture, restricting water flows of the Colorado
river infout of Lake Powell or Lake Mead) which have different implications for the states

competing in using that water.

There are at least four plausible views of these options: I sensitivities to percentage changes in the
parameter values; II partial derivatives, analytical and numerical; III tables and figures of the
option values across a range of parameter values; and I'V comparison of set alternative values (an
arbitrary +/- from the base parameter values). Which risk expression is most useful for the Chief

Real Options Manager CROM ?

Our key contribution is the consideration of the overall risk exposure to a host of changing input
parameter values, showing the composition of that risk (on the present value of operations, and on
each separate option). Possibly unique are the mostly analytical partial derivatives (delta, vega,

rho, epsilon) of the value functions, with illustrative numerical results.

The critical findings are (i) that delta is the most important risk exposure for this set of parameter
values and for this particular model; (ii) switching, divestment, and rival options have different
sensitivities to revenue, volatility, rate and yield changes, providing a rich field for decision
analysis; and (iii) since the signs and dimensions of risk exposure for the values of the leader and
the follower change over different regimes (revenue levels), risk evaluation and hedging are

challenging activities, offering lots of possibilities for interesting future research.

The rest of the paper is organized as follows. Section 2 summarizes the divestment and the
switching models for the joint formulation. Section 3 shows the numerical results, discusses some
of the option characteristics, and provides a sensitivity analysis. Section 4 concludes the work and

provides some suggestions for further research and applications.
2. Mutually Exclusive Option Duopoly Model

We consider a duopoly market with two active and ex-ante symmetric rationale firms (holding the

same parameter values) operating with an incumbent high operating cost technology, referred to
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as policy X, producing the same product output in perpetuity with a market price p(t) subject to
uncertainty and facing a declining market volume q(t). Each firm holds a perpetual option to
abandon production and receive a salvage value while in the incumbent X stage. A first-mover
divestment advantage exists such that first-mover receives the full salvage amount Z while the
second-mover receives only the partial amount AZ where 0 < A < 1. Once the divestment option
is exercised, the firm exits the market which is referred to as policy O. Alternatively, while
operating at X, each firm holds a perpetual option to switch to a more appropriate lower operating
cost technology referred to as policy Y, but incurs a positive irrecoverable investment cost denoted
by K. Note that there is a salvage value when firms switch from policy X to policy Y or divest,

with no divestment after the switch.

The two players in the duopoly game are designated the leader and the follower, referred to as L
and F, respectively. This implies that the leader is always first to enact a policy change from X to
either O or Y, and that the follower always enacts the identical policy change as the leader but

subsequently. Dgy x denotes the market share of the follower given that the leader is pursuing

policy Y and the follower policy X.
We assume the market price p follows a gBm process described by:
dp = apdt + opdW (1)

where «a is the constant instantaneous conditional expected price change per unit of time, o is its
constant instantaneous conditional standard deviation per unit of time, and dW is the increment of
a standard Wiener process. For convergence purposes 6 =1 — a > 0, where r is the riskless

interest rate and & the convenience yield. The market volume flow q is described by:
dq = —0qdt (2)

where 8 > 0 denotes a known constant market depletion rate. Using Ito’s lemma, the firm value

G satisfies the differential equation with v = pq, :

1 %G (v
1522 Q)

0G(v)
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—rGw)+Dw—-f)=0 3)

with the following solution:



where: P12 = G - T_f—z_g) + \/G - ﬂ)2 +Z (5)

A; =20 and A, = 0 are two unknown variables to be determined from the context, (both are

relevant for values of v between the divest and switching joint thresholds).

The nature of the duopoly game is that the leader always commits to a policy change ahead of the
follower. Further, for the current context, the switch threshold is always greater than the divestment
threshold, Décamps et al. (2006). We denote the switching thresholds for the leader and follower
by ¥, s and D, respectively, the divestment thresholds for the leader and follower by ¥, , and Dgp,

respectively, so the threshold order, with the initial revenue value v(0) within the leader’s

thresholds, is:
Vpp < Vpp <v(0) < Vs < Dps (0)
The revenue regimes are illustrated in Figure 1.

Figure 1: Leader and Follower Thresholds for a Random Revenue (v)

This figure shows the revenue (v) regimes and the switch and divest thresholds, R1 is the region
where both firms have switched to policy Y; R2 is the region where the leader has switched to
policy Y and the follower operates with policy X; R3 is the region where both firms operate with
policy X; R4 is the region where the leader has divested and the follower operates with policy X;
and RS is the region where both firms have divested.
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The value function under the joint formulation for the leader is:



Dpyy (L - f—y) if v=1ps R1

5+6 T
v Iy RPN o
V,(v) = Dy x (m - T) + Ay ssvPt if s < v < Dps R2 %
v f PPN ~
Duixx (55— TX) + Ay VP + Ay pvPe if D) <v <D R3
Z if v<7,, R4
The value function under the joint formulation for the follower is:
(D (L—f—y) if v > Dps R1
Flyy\379 ~ > Z Vs
v f oA ~
DFlY,X (m - TX) + AlpszI + AZFDUBZ lf vLS S v < UFS RZ
v Ix
Ve = { Dricx (575 =) + AresvPt + Aarpv ®)
f PN ~
DFlO,X (6?{]—_9 - TX) + Alpsvﬁl + AZFDUBZ lf UFD S v < ULD R4’
\AZ if v<UppR5

The boundary conditions in the thresholds (value matching and smooth pasting) along with value
functions (7) and (8) create a set of equations from which the solutions to the unknown thresholds
and coefficients are obtainable. There are four unknown thresholds signalling the leader’s and
follower’s switching and divesting policies, U;g, Urs, U1p, and Dpp, respectively, four unknown
option coefficients associated with the leader’s and follower’s switching and divesting policies,
Airs, Azip, Airs, and A,gp, respectively, and three unknown rival option coefficients associated
with the leader’s value when the follower switches, 44 s, with the follower’s value accruing when

the leader switches, A;pgs, and divests, A,rpp.

The solutions for the follower’s two thresholds ¥rg and Dgp are:

~ Ba[s Pryy PryxpBi-1  Dryyfy Dryxfx _ s /5’2( __ DrjoxVrp B1-1
Dep (vps 570 o . (K —212) Ups" 2 (AZ —er0 5 +

DF|0,XfX) —0 9)

T

~ P14 PryY PryxpB2—-1 Dryyfy-Dryxfx ., s B ( _ DFjoxVrp B2—1
Drp (vps 570 - . (K—2Z) | = Dps"* (AZ sro 5 T
DF|0,XfX)=0

T

(10)



The follower’s switching and divestment option coefficients are, respectively:

1 ~ DpryyDryx ~ B ~ Drlox . B
Aips = (v ' “~Dpp 2+ U = Dpe"? 11
1FS = g pn \VFS 540 Fp - T Upp s+0 CFS (11)
1 ~ DryyDryx ~ B ~ Drlox . B
A = - (—’U —_— 7V 1+ — 7V 1 12
2FD = poal FS 540 FD FD "5, g VFS (12)

Where AF == ﬁFSB:lﬁFDBZ - ﬁFSBZﬁFDﬁl.

The solutions for the leader’s two thresholds ¥, ¢ and ¥, are:

D -D - D -D D D _
ﬁLDBZ (ﬁLS L|Y,);+9L|X,X [3;11 . L|Y,XfYr L|x,xfx) —(K—-17)— [9L532 (Z _ Lljs(i(;LD ﬁ;ll n
Drxxf
L|XrX X)] -0 (13)
R . Dryx—DrxxBz—1 DrLyvxfy-Drxxf R B2—B
17LDB1 (ULS LIY};JreLlXX ;2 —— Yr EEELE + Aqps vLSBI —2132 +— (K — Z)> -
~ By _ DrixxVLp B2-1 DL|X,XfX) _
0,57 (2 — 2 £ SR = (14)

The leader’s switching and divestment option coefficients are, respectively:

_ 1 ~ Dryyx—Drixx ~ BiYs Bz~ DPLxx .~ B
Aqs = Biny ((VLS 510 + B1A11ssVLs" ' ) Uup™? + Uip 510 VLS (15)

_ 1 ~ Dryx—Drxx ~ B\~ B ~ DLxx ~ B
Azp = T BAL (_ (VLS ~ s+0 + B1A11ssVLs Up™t — Uip 5+ VLS 1) (16)

Where AL == ﬁLsﬁlﬁLDBZ - ﬁLSBZﬁLD

Br
The solutions for the three rival options are:

B2 B2

Aipss = (DF|Y,X - DF|X,X) (:ﬁ - f_X) ﬁLf—L - (DF|0,X - DF|X,X) (Z_De - fTX) % (17)

Dlﬁ

, 5 B
+ (Drjox — Dex) (22 = ) 22 (15

T AL

_ Prs  fx\PL
Azppp = _(DF|Y,X - DF|X,X) (_6+9 - T) AL

Airss = (:;LZ - fTY) (DL|Y,Y - DL|Y,X) 91?5_31 (19)



2.1 Partial Derivatives

ov, (v) .
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ov,, (v)

v A
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ov,, (v v 04 0 . .
gis( )-p o rorgp Y o sV log (V)a_g for Vs <V < Vs,
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06
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(23)

In this study, 1 involves a sensitivity analysis of the sensitivity of all outputs to a 1 % in the
parameter inputs. II analytical partial derivatives (for v), and a mix of partial derivatives for some
of the other critical inputs (numerical where the thresholds are also affected by changes in input
values) are shown in detail at interim points for each regime or stage. III shows the decomposition
of the value function (VF) across a v range, crossing all of the relevant regimes. IV shows the
function values for a somewhat arbitrary +/- increment around the illustrative base case. Plausibly,
the measures of risk exposure are best served by one of these formats. We provide these four risk
measurements for delta, vega, tho, and epsilon®, first assessing which of these real option “Greeks”

is likely to be critical over different regimes.
3. Numerical Evaluations

We use numerical evaluations using base case parameter values given in Table 1. The values of

B, and [, for the base case are 2.2656 and —1.7656, respectively.

Table 1: Base Case Parameter Values

Definition Notation Value

Risk-free rate T 0.08
Convenience yield é 0.03
Market depletion rate 0 0.04

7 Full partial derivatives for the follower, and numerical solutions at v=6, 7.5, 9.5 and 12 are in Appendix F.
& Eventually kappa and alpha, (“alpha” is an abbreviation of final market share, teliki agora, in Greek)
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Market price volatility o 0.20

Follower’s divestment proportion A 0.20

Unadjusted periodic operating cost for policy X fx 10.0

Unadjusted periodic operating cost for policy ¥ fr 2.0

Leader’s divestment value Z 25.0

Switching investment cost to policy ¥ K 35.0

Leader’s market share given both leader and follower pursue policy X  Dpxx 0.50
Leader’s market share given both leader and follower pursue policy ¥ Dpyy 0.50
Leader’s market share given leader pursues policy ¥ and follower policy X  Dpjy x 0.425
Leader’s market share given leader exits and follower pursues policy X  Dyjo,x 0.00

3.1 Numerical Results

With the base case values, we present the numerical solutions for the leader’s and follower’s

various thresholds and coefficients in Table 2.

Table 2: Values for the Various Thresholds and Option Coefficients

Leader Follower
Uip 6.0924  Dpp 5.7392
DIVEST A,;, 862.9820 A,rp 1034.8147
Ayppp  -643.7031

6 8.2585 s 12.2631
SWITCH Ays 0.1412  Agps 0.0132
AvLss 0.0385 Aqpss 0.1252

Table 3 is a “big picture of the risk exposure” of the leader and follower to changes in critical
inputs. The inputs are chosen according to the conventional Greeks for options (delta, vega, rho,
and epsilon, A,u,p,8). From the complete sensitivities table in Appendix C and D across the most
important two middle regimes, delta is typically the most important, followed by epsilon. While
vega and rho are not so critical, those Greeks are of conventional interest concerning traded

options.” Note that the partial derivatives of the VF with respect to changing v does not involve

% The conventional derivatives text Hull,J. (2022), Options, Futures and Other Derivatives, Pearson/Prentice Hall
focuses on delta, theta (time sensitivity), gamma, vega and rho (in that order), but ignores kappa and epsilon.

11



any change in the thresholds or option coefficients. ~Note that the partial derivatives of the VF
with respect to changing ¢ does not involve any change in the PV of operations, but in the
thresholds and option coefficients. Note that the partial derivatives of the VF with respect to
changing r involves changing the present value of operating costs, and also in the thresholds and
option coefficients. Note that the partial derivatives of the VF with respect to changing o involves

changing the present value of revenue, and also in the thresholds and option coefficients.

The obvious observation from Table 3 is that the VF L is a smooth function across the discrete v,
while the VF F jump around the leader switch threshold, changing from being more sensitive at v
below the threshold, to less sensitive above, as the leader shifts from an initial market share of
50% to a reduced middle market share of 42.5% with lower operating costs. Apart from the jumps,
the deltas (Av) are positive and increasing over v for both L and F. When should the follower buy

protective puts on v, or short v to lock in a price, as v increases?

There is a similar although opposite effect for epsilon (Ad) across increasing v increments. Apart
from the jumps, the epsilons are negative and decreasing over v for both L and F. When (and how)

should the follower buy protective puts on 9, as v increases?

There is a similar effect for vega (Ac) across increasing v increments. Apart from the jumps, the
vegas are negative and decreasing over v for both L and F. When should the follower buy

protective volatility puts, as v increases?

Although rho (Ar) is not critical, it is possibly easier to hedge through interest rate derivatives.
However, while the VF L benefits from an increased interest rate as v increases, the follower
benefits only above the L switch threshold. Should the follower protect its VF from interest rate

increases below the L switch threshold, suddenly reversing the hedge position after the L switches?

Table 3

Sensitivities of the Value Functions to 1% Increase in Critical Inputs

Theta is not relevant for the perpetual options in our model, but gamma is considered in the proofs that the
differential equations are solved, Appendix E.
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v 6.5 7 7.5 8 8.5 =) 9.5 10 10.5 11 11.5 12
Av F 0.43 0.54 0.64 0.75 0.32 0.41 0.49 0.57 0.64 0.71 0.78 0.85
Av L 0.14 0.28 0.42 0.55 0.63 0.67 0.72 0.77 0.82 0.87 0.92 0.97

Av as function of v

6.5 7 7.5 8 8.5 £ 9.5 10 10.5 11 11.5 12
v

= DV F e Dv L

Ac F 0.09 0.06 0.03 0.00 0.15 0.14 0.13 0.11 0.09 0.07 0.04 0.02
Ao L 0.02 0.03 0.02 -0.01 -0.03 -0.04 -0.05 -0.06 -0.07 -0.08 -0.10 -0.11

Ao as function of v
0.20

0.15

o— .

0-00 Tooee—
6.5 7 7.5 8 8.

9.5 10 10.5 11 11.5 12
-0.05

-0.10
——

-0.15
v

—@m—= DG F === Do L

Ar F 0.10 0.08 0.06 0.04 -0.15 -0.10 -0.06 -0.02 0.02 0.05 0.09 0.11
Ar L 0.03 0.08 0.12 0.16 0.18 0.19 0.20 0.20 0.21 0.22 0.22 0.23

Ar as function of v
0.25

0.20

0.15

0.10

0.05

0.00

-0.05

-0.10

-0.15

-0.20

v

=@ Dr F ===@== Dr L

A8 F -0.17 -0.22 -0.27 -0.32 -0.10 -0.14 -0.18 -0.21 -0.25 -0.29 -0.32 -0.35
AS L -0.05 -0.12 -0.19 -0.25 -0.29 -0.31 -0.34 -0.36 -0.38 -0.40 -0.42 -0.44
AS as function of v

0.00

_0.05 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12

-0.10
-0.15
-0.20
-0.25
-0.30
-0.35
-0.40
-0.45
-0.50

v

—— D5 F =D& L

Now, why do these changes in the value functions occur? Are they due to the present value and/or

the option portfolio value changes, and why are they different over the regimes?
3.2. DELTA

I Sensitivities to changes in v are extracted from the Appendix D1 & D2, Complete Sensitivities

Tables for R3 & R2
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Table 4

The Effect of 1% Revenue Increase on the Value Functions in a Duopoly

Absolute A R3v=7.5

BASE CASE v up 1%
VF F 15.5103 0.6445
F 3 PV OPS -8.9286 0.5357
F3S 1.2644 0.0288
F3D 29.5043 -0.5138
F3SS 12.0232 0.2741
F3 DD -18.3531 0.3196
VF L 29.2381 0.4164
L3 PV OPS -8.9286 0.5357
L3S 13.5616 0.3092
L3D 24.6051 -0.4285

VF F
F2PV OPS
F2s
F2D

VF L
L2 PV OPS
L2SS

L2 -(K-2)

Absolute A R2v=9.5
BASE CASE v up 1%

27.7577 0.4911
6.1607 0.7804
2.1600 0.0492

19.4370 -0.3385

43.3704 0.7208

47.0536 0.5768
6.3168 0.1440

-10 (0)

An increase from v=7.5 to 7.575 (1%) results in an absolute increase of the VF F of nearly .22

more than for the L, mostly due to the increase in the F’s rival options, SS and DD, since the

increase in the PV OPS of both is the same, with the same equal market share before either divests

or switches. An increase from v=9.5 to 9.595 (1%) results in an increase of the VF L of over .22

more than for the F, in spite of the greater increase for the F’s OPS (with then a 57.5% market

share), due to the decrease in the F’s divest option value. So, while both benefit from a v (mostly

price) increase, the effect on rival and divest option values is quite different. This confirms the

adage, even if you are ahead (leader) or behind (follower), watch the value of your rival and

strategic options as v increases. The PV of operations is not everything.

II Partial derivatives Numerical Results

Table 5

Partial Derivatives at Base Values, v=7.5, 9.5

R3, v=7.5

SVL3/Sv
5.4472

SVL3/dc
8.2421

SVL3/3r
-476.12

3SVL3/33
-630.9151

SVF3/3v
8.5316

SVF3/3c
15.6286

SVF3/Sr
-544.3535

SVF3/33
-921.0211

R2, v=9.5

SVL2/SVv
7.75779

SVL2/dc
-22.99249

3SVL2/Sr
247.8524

SVL2/83S
-1123.035

14

SVF2/3v
5.1171

SVF2/5c
63.3195

SVF2/3r
-797.2131

SVF2/33
-596.631



The deltas are all positive, A F3>AL3, AF2<AL2, consistent with Table 4. What the absolute
number should be used for is challenging, since it is obviously not for delta hedging at a
particular level of v. Note that the deltas for each element of the value function are shown in

Appendix F. In line with conventional option pricing theory, it could be argued that

ov, (v) 1
# DL‘XX 5o BA VT + B4y, v = 7.1429+4.0966-5.7922=5.4472 24

BA VP = 4.0966
B, Ay, v =-5.7922

a short position 4.1/7.5=55% in v should be used to delta hedge the switch option, and a long
position 5.8/7.5=77% should be used to delta hedge the divest option when v=7.5, but this point is

not well presented in the literature. !

IIT Table 6 shows the composition of the VFs for L and F across a v range 5.5-12.5 by .5

increments, with a closer focus in Tables 7 & 8.

Table 6
Follower's Value Function as Function of v, Across Regimes
v 5.50 6.00 6.50 7.00 750 8.00 8.50 9.00 9.50 1000 1050~ 11.00 1150 1200  12.50
Regime L5 L4 L3 L3 L3 L3 L2 L2 L2 L2 L2 L2 L2 L2 L1
FValieSUM 50000 5.2278 78934 114606 155103 19.9728 23.2798 253484 27.7577 304481 333735 364974 39.7911 432311 46.7857
FOpPV -39.2857 -16.0714 -12.5000 -89286 -53571 -2.0536 2.0536  6.1607 10.2679 14.3750 184821 22.5893 26.6964 76.7857
AtFsy”! 0.7626 09143 10814 12644 14634 16789 19110 21600 24262 27098 3.0110 33300 3.6671
A2rD V" 43,7508 379850 333263 29.5043 263269 23.6545 21.3839 194370 17.7541 16.2887 15.0043 13.8718 12.8676
AtFss ™! 8.6940 10.2834 12,0232 13.9162
A2DD V" 236284 -207305 -183531 -16.3765
InvestCost 5.0000 -30.0000

Leader's Value Function as Function of v, Across Regimes

v 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 950 1000 1050 1100  11.50 = 1200 @ 1250
Regime L5 L4 L3 L3 L3 L3 L2 L2 L2 L2 L2 L2 L2 L2 L1
LValyeSUM  25.0000 25.0000 254125 268916 29.2381 322950 358919 39.6064 433704 47.1845 51.0495 54.9660 589347 62.9561 76.7857
LOpPV 0.0000 0.0000  -16.0714 -12.5000 -8.9286 -53571 40.9821 44.0179 47.0536 50.0893 53.1250 56.1607 59.1964 62.2321 76.7857
AlLssy"" 49098 55886 63168 7.0952 7.9245 88053 9.7383 10.7240
AlLsv"! 9.8064 11.5992 13.5616 15.6969
ADv” 316775 27.7924 246051 21.9552
InvestCost 25.0000  25.0000 -10.0000 -10.0000 -10.0000 -10.0000 -10.0000 -10.0000 -10.0000 -10.0000

10 Appendix E shows these results in an Excel Spreadsheet. Also, the A & T for v=6, 7.5, 9.5 and 12.5, are a
compliment for Table 6.
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IV Table 7 compares the VF composition in R3, base v=7.5 down v=7, up v=8.

Table 7
Values Over Three v (R3) Change

v 7 7.5 8 1
Regime L3

F Value SUM 11.4606  15.5103  19.9728 8.5122
F Op PV -12.5000  -8.9286  -5.3571 7.1429
A1FS vP! 1.0814 1.2644  1.4634 0.3820
A2FD v P? 33.3263  29.5043 26.3269  -6.9995
A1FSS vP! 10.2834  12.0232  13.9162 3.6328
A2FDD v P? -20.7305 -18.3531 -16.3765 4.3540
L Value SUM 26.8916  29.2381  32.2950 5.4033
L Op PV -12.5000  -8.9286  -5.3571 7.1429
A1LS vP! 11.5992  13.5616  15.6969 4.0977
A2LD v P? 27.7924  24.6051 21.9552  -5.8372

In regime R3, L benefits less than F by a v increase, even though the effect on the PV OPS is the
same, given equal market shares and operating costs, because F benefits from the increase in the
value of rival options. L could demand 1 from the F, so the L net value change is 6.4, and the F

reduced value change is then 7.5, for encouraging a price increase, a win-win compromise.

Table 8 compares the VF composition in R2, base v=9.5 down v=9, up v=10.

Table 8
Values Over Three v (R2) Change

v 9 9.5 10 1
Regime L2

F Value SUM 25.3484 27.7577 30.4481 5.0997
F Op PV 2.0536 6.1607 10.2679 8.2143
A1FS v P! 1.9110 2.1600 2.4262 0.5152
AZ2FD v P2 21.3839 19.4370 17.7541 -3.6298
L Value SUM 39.6064 43.3704 47.1845 7.5781
L Op PV 44.0179 47.0536 50.0893 6.0714
AILSS v P! 5.5886 6.3168 7.0952 1.5067
INVEST -10.0000 -10.0000 -10.0000 0.0000
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In regime R2, L benefits more than F by a v increase. The effect on the PV OPS is not the same,
given the L market shares is less than for the F, but the F suffers from a decrease in the value of
the divest option. L could offer the F 1 (or pay common marketing costs), so the L net value
change is 6.57, the F net value is 6.10, in order to encourage a price increase, a win-win

compromise.

How might these measures of risk exposure be used in practice? First of all, the “big picture”
shows what is important, in this case v (or A). 1 Table 4 provides a convenient view of the absolute
$ comparison of the F and L gains, and decomposition of those changes at v=7.5, 9.5. Both benefit
(or lose in the case of a 1% in v). The change in the PV OPS is not the major focus when v=7.5,
but is dominate at higher v. II the use and mis-use of analytical partial derivatives (for v) is a
challenge for future research, but meanwhile the signs and comparative dimensions are consistent
with Table 4 and 7 & 8. III Table 6 shows the VF across a range of v, and provides a convenient
format for any particular extract, such as IV shows the function values for arbitrary +.5/-.5
increment around the illustrative base case. Also, IV can be used to view whether the downside
loss is symmetric (opposite sign, the result is usually not exactly the same in size) with the upside
gain. Which format is the most visually convenient is perhaps a matter of taste and presentation
clarity, probably not expressible by one number such as Value at Risk VaR, or the numerous

alternatives developed for traded options.
3.3 VEGA

I Sensitivities to a 1 % change in the base case volatility of 20% are shown in Table 9

Table 9
Absolute A R3v=7.5 Absolute A R2v=9.5
BASE CASE c up 1% BASE CASE c up 1%

VF F 15.5103 0.0321 VF F 27.7577 0.1277
F 3 PV OPS -8.9286 0.0000 F 2PV OPS 6.1607 0.0000
F3S 1.2644 -0.0684 F2 S 2.1600 -0.1237
F3D 29.5043 0.2129 F2D 19.4370 0.2514
F 3SS 12.0232 -0.0635
F 3 DD -18.3531 -0.0489
VF L 29.2381 0.0168 VF L 43.3704 -0.0457
L3 PV OPS -8.9286 0.0000 L2 PV OPS 47.0536 0.0000
L3S 13.5616 -0.1580 L2SS 6.3168 -0.0457
L3 D 24.6051 0.1747 L2-(K-2) -10.0000 0.0000
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Increases in volatility reduce the divest thresholds for both the L and F, and reduce all of the divest

option coefficients, but increase the switch thresholds and increase the switch option coefficients,

except for the F switch option coefficient. Table 9 shows that the VF F increases by a very small

absolute amount in R3. Although the divest coefficient decreases, the power 32 increases, so the

overall effect is the divest option value increases, offset by decreases in the other three option

values. There is a similar pattern at the R2 stage (v=9.5), except the absolute changes are

somewhat larger. Generally, although some of the separate option values are sensitive to changes

in volatility, the portfolio of options for the F is not, at least at the R3 stage. The value functions

for the L are not very sensitive to small changes in volatility.

II Partial derivatives “vega” are shown in Table 5. The signs are consistent with Table 9, all

value function vegas are positive, except for :

ov, (v ov,, (v 04 0 . -
5(5_ )= gg )=vﬁ1 —alé_ss + A,V log(v)a—'i1 for v,  <v<v,,
ov,, (v) B

2L = 4763V 1 0385 % T 1127V LN (9.5) forv=9.5
O

=78.1649-101.1513 =-22.9924

0 : o :
a—ﬂ1<0, so the second part of the partial derivative is negative.
o)

IIT Table 10 shows the vegas across various ranges in R2

Suppose the actual market volatility is 20%, and v is between vLS and vFS, Regime 2.

Table 10
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vR2 8.5 8.75 9 9.25 9.5 9.75 10 10.25 10.5 10.75

SVL2/50 (13.99) (16.02) (18.19) (20.52) (22.99) (25.62) (28.41) (31.37) (34.48) (37.77)
(8ALLSS/Sc)vABL 60.75 64.87 69.15 73.58 78.16 82.90 87.79 92.84 98.05 103.42

ROLSS*(5B1/66)*(vAb1) *LOG(v) (74.73) (80.89) (87.34) (94.09) (10115  (108.52)  (116.20)  (124.21)  (132.53)  (141.19)
ROLSS*(5B1/50) (0.27) (0.27) (0.27) (0.27) (0.27) (0.27) (0.27) (0.27) (0.27) (0.27)
VABL 127.54 136.20 145.18 154.47 164.10 174.04 184.32 194.92 205.86 217.13

3VL2/8a as function of v, R2

8.75 9 9.25 9.5 9.75 10 10.25 105 10.75
(15.00)

(20.00)

(25.00)

(30.00)

(35.00)

(40.00)

The negative vega a;/ 2 becomes more negative with v across this range, implying that although
o

this rival option is not of large value, after the leader switches there is no advantage for further
increases in volatility. The effect of the vega on the volatility risk exposure over the R2 range of
v appears to be linear. The leader benefits if vFS falls due to a decline in volatility, but it is unlikely
that the leader can do much alone to reduce volatility for the follower. If the follower is myopic
and ignorant of real options, perhaps the leader can persuade the follower that lower risk is best all
around. Naturally, such a leader would discourage publication and circulation of this article,

indeed.

IV  Now, we turn to the exposure of the leader and follower to changes in the “effective price
volatility” from 15% to 25% as indicated in Table 11, where the last seven rows are the derived

option coefficients.

Table 11 Derived Thresholds and Option Coefficients for 6=15%, 20%, 25%
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Table 11

o 0.1500 0.2000 0.2500
y:» 2.7228 2.2656 1.9757
Y (2.6117) (1.7656) (1.2957)
VFD 6.3599 5.7392 5.1441
VFS 9.9311 12.2631 16.5486
vLD 6.4101 6.0924 5.7394
vLS 7.6662 8.2585 9.0899
AIFS=SOFS 0.0138 0.0132 -0.0032
A2FD= SO F D 4641.9220 1034.8147 472.5265
AILSS=RO L SS 0.0169 0.0385 0.0620
AILS=SOL S 0.0752 0.1412 0.1865
A2LD=SO L D 3824.5225 862.9820 390.8268
AIFSS=RO F SS 0.0591 0.1252 0.2005
A2FDD=RO F DD -3330.4886 -643.7031 -267.8460

In Regime 3, when v=7.5, Table 12 shows that the leader’s switch option SO L_S decreases with
an increase in p volatility -8.1665 for 15% to 25%, while the leader’s divest option SO L_D
increases 8.8935, for a net gain of 0.727. The F’s divest option SO F_D increases lots with an
increase in p volatility, more than offsetting the decrease in the other three options when volatility

increases from 15% to 25%.

Table 12: R3, v = 7.5

R3, v=7.5
Volatility 15% 20% 25% Change
VF L 29.0510 29.2381 29.7780 0.7270
L3 PV OPS -8.9286 -8.9286 -8.9286 0.0000
L3SOLS 18.1557 13.5616 9.9892 -8.1665
L3SOLD 19.8239 24.6051 28.7174 8.8935
VF F 15.4749 15.5103 16.6836 1.2087
F 3 PV OPS -8.9286 -8.9286 -8.9286 0.0000
F3SOFS 3.3416 1.2644 -0.1691 -3.5108
F3SOFD 24.0608 29.5043 34.7205 10.6598
F3ROFSS 14.2642 12.0232 10.7417 -3.5225
F 3RO F DD -17.2631 -18.3531 -19.6809 -2.4178

This is a differential result, that is both leader and follower benefit from a volatility increase, but
in differential amounts. Perhaps the leader and follower could share (perhaps proportion to

benefits) the expense of promoting more p volatility.

The consequences are reversed for the leader if v = 9.5, above the leader’s switching threshold

(below the follower’s) for R2, as shown in Table 13.
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Table 13: R2, v = 9.5

Regime 2, vLS<v<VFS v=9.5

Volatility 15% 20% 25% Change

VF L 44,8213 43.3704 42.3497 -2.4716
L2 PV OPS 47.0536 47.0536 47.0536 0.0000
L2 RO LSS 7.7677 6.3168 5.2961 -2.4716
L2K-Z -10.0000 -10.0000 -10.0000 0.0000
VF F 25.4986 27.7577 31.4511 5.9525
F 2 PV OPS 6.1607 6.1607 6.1607 0.0000
F2SOFS 6.3605 2.1600 -0.2698 -6.6303
F2SOFD 12.9774 19.4370 25.5602 12.5828

This is a contrast result, since the leader would prefer less volatility (the ROLSS decreases with
an increase in volatility), but the follower benefits from more volatility (the SOFD increases more

than the SOFS decreases, for a net increase benefitting the VF F).

3.4 RHO

I Sensitivities to changes in r are extracted from the Appendix D1 & D2, Complete Sensitivities
Table 14

The Effect of 1% Rate Increase on the Value Functions in a Duopoly

Absolute A R3v=7.5 Absolute A R2v=9.5
BASECASE  rup 1% BASE CASE rup 1%

VFF 15.5103 0.0631 VFF 27.7577 -0.0580
F 3PV OPS -8.9286 0.6188 F 2PV OPS 6.1607 0.7116
F3S 1.2644 0.0041 F25S 2.1600 0.0006
F3D 29.5043 -0.9842 F2D 19.4370 -0.7702
F3SS 12.0232  -0.2201
F3DD -18.3531 0.6445
VFL 29.2381 0.1190 VFL 43.3704 0.1962
L3PV OPS -8.9286 0.6188 L2 PV OPS 47.0536 0.1052
L3S 13.5616 0.1435 L2SS 6.3168 0.0910
L3D 24.6051 -0.6433 L2-(K-2) -10 0.0000

An increase from r=.08 to .0808 (1%) results in a small increase of the VF F when v=7.5, due to a
decline in the PV of operating costs, balanced against a loss in the divest option value; when v=9.5,

the PV of fx also increases, but this is not enough to offset the loss in the divest option value. An
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increase in r results in an increase of the VF L, due to a decrease in the operating cost, which
naturally is less as f falls from 10 to 2 in R2. In this case, the PV of operations is important but

not everything.

IT Partial derivatives “rho” are shown in Table 5. The signs are consistent with Table 15 & 16,

all value function are negative, except for :

v, (v OA Pl ) i
Lﬁ%() =Dy x L§+ Vi —a‘LSS + A,V Zog(v)% for v,  <v<v.,

r / aAr ' 0B ' (27)
Dy x r—;’ +v/ #SS+ A,V log(9.5)—r] =247.8524

%<O, but the third part of the partial derivative, which is negative, is outweighed by the positive
o

first and second parts.
111
Table 15

Rho as a function of v

A B C | D | E | F | G H | J K
v 85 8.75 9 9.25 9.5 9.75 10 10.25 105 10.75
SVL2/3r 191.29 203.24 215.56 228.26 241.33 254.77 268.58 282.77 297.34 312.28
(3A1LSS/r)vAB1 262.92 280.77 299.27 318.44 338.27 358.78 379.96 401.82 42437 447.60
ROLSS*(3B1/r)*(vAb1)*LOG(v) (71.63) (77.53) (83.71) (90.18) (96.95) (104.01) (111.38) (119.05) (127.03) (135.33)
ROLSS*(3B1/3r) (0.60) (0.60) (0.60) (0.60) (0.60) (0.60) (0.60) (0.60) (0.60) (0.60)
vABL 127.54 136.20 145.18 154.47 164.10 174.04 184.32 194.92 205.86 217.13

dVL2/dr as a function of v

310.00
290.00
270.00
250.00

230.00
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Table 16 shows that the effect of rho on the rate exposure over the R2 range appears to be linear.!!

11 This focus on the options only ignores the interest rate effect on the PV of operations.
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1A%

REGIME 3
RATE

VFL

L3 PV OPS
L3SOLS
L3SOLD
VF F

F 3PV OPS
F3SOFS
F3SOFD
F3ROFSS
F 3RO FDD
vFD

VFS

vLD

VLS

In Regime 3, both the leader and follower benefit from an increase in interest rates, since the PV
of operations at the high operating costs is negative, an increase in the rate decreases the negative
PV. However, the leader benefits from a rate increase somewhat more than the follower (thus a
differential example) because the net decline in the leader’s two SO at that stage is somewhat less

than the decline in the value of the follower’s two SO and two RO at that stage.

Regime 2, vLS<v<vFS
Interest Rate

VFL

L2 PV OPS
L2RO LSS
L2K-Z
VFF

F 2PV OPS
F2SOFS
F2SOFD

Table 16
vLD<v<vLS v=7.5
7% 8% 9% Change

27.7649 29.2381 30.6976 2.9327
-17.8571 -8.9286 -1.9841 15.8730
11.3808 13.5616 15.0162 3.6354
34.2412 24.6051 17.6655 -16.5757
14.4371 15.5103 16.1213 1.6842
-17.8571 -8.9286 -1.9841 15.8730
1.0121 1.2644 1.1105 0.0984
44.6767 29.5043 19.1466 -25.5302
14.6354 12.0232 9.2998 -5.3356
-28.0300 -18.3531 -11.4515 16.5785
6.0358 5.7392 5.4697 -0.5660
13.9822 12.2631 11.1691 -2.8131
6.3019 6.0924 5.9290 -0.3729
8.7285 8.2585 7.9009 -0.8276

Table 17
v=9.5
7% 8% 9% Change

40.5421 43.3704 45.5410 4.9988
45,5357 47.0536 48.2341 2.6984
5.0064 6.3168 7.3068 2.3004
-10.0000 -10.0000 -10.0000 0.0000
29.5064 27.7577 27.5765 -1.9299
-4.1071 6.1607 14.1468 18.2540
1.8004 2.1600 1.8336 0.0333
31.8132 19.4370 11.5961 -20.2172
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In Regime 2, the leader benefits but the follower does not benefit from an increase in interest rates
(a contrast example). The PV of operations at the lower operating cost is positive, but an increase
in the rate decreases the value of that operating cost. The VFS increases with increasing interest
rates, so the L2 ROLSS increases. It is curious that the F SO FS first increases, then decreases,

with increased interest rates.

3.5 EPSILON

1 Table 18

Absolute A R3v=7.5 Absolute A R2v=9.5

BASE CASE o up 1% BASE CASE o up 1%

VFF 15.5103  -0.2739 VFF 27.7577 -0.1767
F 3PV OPS -8.9286 -0.2286 F 2PV OPS 6.1607 -0.3330
F3S 1.2644  -0.0388 F25S 2.1600 -0.0620
F3D 29.5043 0.2852 F2D 19.4370 0.2183
F3SS 12.0232  -0.1519
F3DD -18.3531  -0.1399
VFL 29.2381 -0.1866 VFL 43.3704  -0.3355
L3 PV OPS -8.9286 -0.2286 L2 PV OPS 47.0536 -0.2461
L3S 13.5616  -0.2325 L2SS 6.3168 -0.0894
L3D 24.6051 0.2745 L2-(K-2) -10.0000 0.0000

The decrease in the VF F in R3 is due to the decline in the PV of v, and the rival option values, not
being offset by an increase in F3 D. Note the decline in the VF F compared to the VF L is greater
when v is low (R3), reversed when v is high (R2).

IT All of the epsilon partial derivatives are negative, consistent with Table 19, where all of the VF

decline with an increase of 9.

111 Table 19

8.75 E) 9.25 o.5
(260.34) (273.07)  (285.98)  (299.06)
(579.91) (618.13)

S/853)vABL
=(5B1/55)*(vAb1) *LN(V)
ROLSS™*(5B1/53)

vABL




Table 20 shows that the effect of rho on the yield exposure of the option values over the R2 range

appears to be linear.!?

v

Table 20
REGIME 3 vLD<v<vLS v=7.5
YIELD 2% 3% 4% Change
VF L 39.0312 29.2381 25.4580 -13.5732
L3 PV OPS 0.0000 -8.9286 -15.6250 -15.6250
L3SOLS 23.1488 13.5616 7.2729 -15.8759
L3SOLD 15.8824 24.6051 33.8101 17.9277
VFF 27.6937 15.5103 8.6799 -19.0138
F 3 PV OPS 0.0000 -8.9286 -15.6250 -15.6250
F3SOFS 3.1226 1.2644 0.3652 -2.7574
F3SOFD 20.1409 29.5043 38.8570 18.7162
F3ROFSS 17.7849 12.0232 7.6082 -10.1767
F 3RO F DD -13.3547 -18.3531 -22.5255 -9.1708
vFD 5.0852 5.7392 6.3098 1.2246
VFS 9.8830 12.2631 15.2435 5.3605
vLD 5.2116 6.0924 6.9777 1.7661
vLS 6.8968 8.2585 9.7166 2.8198

In Regime 3, both the leader and follower suffer from an increase in yields, since the PV of v is
reduced with higher 6. However, the leader suffers from a yield increase somewhat less than the
follower (thus a differential example) because the net decline in the leader’s two SO at that stage

1s somewhat less than the net decline in the value of the follower’s two SO and two RO.

Table 21

Regime 2, vLS<v<vFS v=9.5

YIELD 2% 3% 4% Change
VFL 56.3490 43.3704 33.5415 -22.8075
L2 PV OPS 56.6667 47.0536 39.8438 -16.8229
L2ROLSS 9.6823 6.3168 3.6977 -5.9846
L2K-Z -10.0000 -10.0000 -10.0000 0.0000
VFF 36.7299 27.7577 23.9386 -12.7913
F 2 PV OPS 19.1667 6.1607 -3.5938 -22.7604
F2SOFS 5.0101 2.1600 0.6692 -4.3409
F2SOFD 12.5532 19.4370 26.8631 14.3100

12 This focus on the options only ignores the yield effect on the PV of operations.
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As noted under I, in Regime 2, the leader suffers more than the follower from an increase in yield
(a contrast example). The PV of revenue is positive, but an increase in the yield decreases the value
of that revenue. The vFS increases with increasing yield, so the L2 ROLSS decreases. Exactly
how either the L or F can alter the return shortfall, or convenience yields, is a challenge (perhaps
by going short in a nearby futures contract and long in a dated contract, or vice versa, but rolling

over such a calendar or temporal spread would involve transaction costs).

4. Conclusion

1 Tables 4, 9, 14 and 18 provide a convenient view of the absolute comparison of the F and L
gains/losses as v, o, 1, 6 change. IV Tables 7-8, 12-13, 16-17 and 20-21 show the decomposition
of those changes at v=7.5, 9.5, for arbitrary +/- increments around the illustrative base cases. The
change in the PV OPS is not the major focus when v=7.5, but is often dominate at higher v. II the
use and mis-use of analytical partial derivatives is a challenge for future research, but meanwhile
the signs and comparative dimensions should be seen to be consistent with the numerical tables.
III Table 6 shows the VF across a range of v, and provides a convenient format for any particular
extract. Appendix E, Tables 10, 15 and 19 show the partial derivatives across a selection of v

(focusing on R2).

These numerical results provide a rich format for suggesting, and evaluating, risk reduction and
enhancement activities. Duque and Paxson (1993, 1994) studied using Greeks for finite traded
options, using delta hedging and options with different moneyness and expirations, and interest
rate derivatives, to reduce the equivalent value at risk in option portfolios. Typically adding
appropriate opposite positions to hedge one type of risk, alters the other risk elements, so option
hedging is complicated. Similar techniques are challenging regarding real option portfolios.
Possibly long/short positions in v futures might reduce delta risk, if v prices are traded
commodities. Similarly, long/short positions in options on v futures (or physical, through
negotiated contracts) might be used to reduce volatility risk, and naturally in interest rate futures
and options. Then in the real options context, arrangements with governments, rivals, and third
parties provide a wide field for risk reduction or enhancement. Real option games can be viewed,

and played, starting perhaps with the formats provided herein.
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A key contribution of our paper is the consideration of the overall risk exposure to a host of
changing input parameter values, showing the composition of that risk (on the present value of
operations, and on each separate option). Possibly unique are the mostly analytical partial
derivatives (delta, vega, rho, epsilon) of the value functions and each separate option, with

tllustrative numerical results.

The critical findings are (i) that delta is the most important risk exposure for this set of parameter
values and for this particular model, but risks in packages of options sometimes reduce, sometimes
compliment the present value risk (which appears to be the focus of lots of corporate hedging); (ii)
switching, divestment, and rival options have different sensitivities to revenue, volatility, rate and
yield changes; and (iii) since the signs and dimensions of risk exposure for the values of the leader
and the follower change over different regimes (revenue levels), risk evaluation and hedging are

challenging activities, offering lots of possibilities for interesting future research.

Acknowledgements: We thank in advance the participants in the EFMA Conference Lisbon 2024 for
helpful comments.
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SUPPLEMENTARY APPENDIX 15 January 2024

Mutually Exclusive Rival Options: Risk Evaluation

Appendix A Joint Solution Formulae

A ] B | C [ o
| 1] JOINT Complete Solution EQ
| 2 [INPUT Table A1 MERO
| 3|r 0.08 RISK
| 4]0 0.04
| 5 X 10
(6 v 2
| 7|z 25
| 8 [K 35
El 0.20
|10 ]A 0.20
1116 0.03
| 12 [D LXX 0.50
| 13 |D FXX 0.50
| 14 [D LOX 0.00
| 15 [D FOX 1.00
| 16 [D LYX 0.425
| 17 [D FYX 0.575
| 18 [D LYY 0.500
| 19 [D FYY 0.500
| 20 [OUTPUT 0.3533 B25-B23
Aﬁ, 2.2656 0.5-(B3-B11-B4)/B9/2+SQRT((0.5-(B3-B11-B4)/B9"2)"2+2*B3/B9"2)

22 (g, (1.7656) 0.5-(B3-B11-B4)/B9/2-SQRT((0.5-(B3-B11-B4)/B972)"2+2*B3/B9"2)

[ 23|vrD 5.7392 yes

| 24 [vFS 12.2631 yes

| 25 |vLD 6.0924

| 26 |VLS 8.2585

| 27 |AIFS 0.0132 (B24*(B19-B17)*(B23/B22)/(B11+B4)+B23*B15*(B247B22)/(B11+B4))/(B21*B40) 11
| 28 [A2FD 1034.8147 -(B24*(B19-B17)*(B23~B21)/(B11+B4)+B23*B15*(B24/B21)/(B11+B4))/(B22*B40) 12
| 29 [A1LSS 0.0385 (B24/(B11+B4)-B6/B3)*(B18-B16)*(B24/(-B21)) 19
| 30 |AILS 0.1412 ((B26*(B16-B12)/(B11+B4)+B21*B29*(B26/B21))*(B25/B22)+B25*B12*(B26B22)/(B11+B4))/(B21*B46) 15
| 31 [A2LD 862.9820 (-((B26*(B16-B12)/(B11+B4)+B21*B29*(B26/B21))*(B25”~B21))-B25*B12*(B26”~B21)/(B11+B4))/(B22 16
| 32 |AFSS 0.1252 (B17-B13)*(B26/(B11+B4)-B5/B3)*(B25°B22)/B46-(B15-B13)*(B25/(B11+B4)-B5/B3)*(B26~B22)/B46 17
| 33 |A2FDD -643.7031 -(B17-B13)*(B26/(B11+B4)-B5/B3)*(B25/B21)/B46+(B15-B13)*(B25/(B11+B4)-B5/B3)*(B26"B21)/B46 18
| 34| NUMERICAL SOLUTION

135[AF 12.7542 (B247B21)*(B237B22)-(B24"B22)*(B23/B21)

136 4L 3.4744 (B267B21)*(B257B22)-(B26"B22)*(B257B21)

| 37 | 9 0.0000 (B24*(B19-B17)*(B21-1)/(B21*(B11+B4))-(B19*B6-B17*B5)/B3-(B8-B10*B7))*(B23/B22)-(B10*B7-B15*B23*(B21-1)/(B21*(B11+B4))+ 9
138 10 0.0000 (B24*(B19-B17)*(B22-1)/(B22*(B11+B4))-(B19*B6-B17*B5)/B3-(B8-B10*B7))*(B23/B21)-(B10*B7-B15*B23*(B22-1)/(B22*(B11+B4))+ 10
139 13 0.0000 (B26*(B16-B12)*(B21-1)/(B21*(B11+B4))-(B16*B6-B12*B5)/B3-(B8-B7))*(B254B22)-(B7-B25*B12%(B21-1)/(B21%(B11+B4) ~ 13
| 40 | 14 0.0000 (B26*(B16-B12)*(B22-1)/(B22*(B11+B4))-(B16*B6-B12*B5)/B3+B29*(B267B21)*(B22-B21)/B22-(B8-B7))*(B25/B21)-(B7-B12*B25*(B22-1)/(B22*(B114 14
41 |Solver 0.00000 Set SUM(B37:B40)=B41=0, Changing B23:B26
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A | B [ C
1| JOINT VF Formulae Table A2
|2 [inpuT
3] 0.08
4 |o 0.04
|5 |x 10.00
6 |fy 2.00
7 |2 25.00
|8 |k 35.00
9 |o 0.20
10| 0.20
115 0.03
12 |b Lxx 0.50
13 |D Fxx 0.50
14 |p Lox 0.00
15 | FOX 1.00
(16 |D LY 0.425
17 |D Fyx 0.575
18 |p LY 0.50
(19 |p Fyy 0.50
[ 20 |ouTPuT
21 B, 2.2656  0.5-(B3-B11-B4)/B9"2+SQRT((0.5-(B3-B11-B4)/B9IN2)42+2*B3/B9I2)
[ 22|B, (1.7656) 0.5-(B3-B11-B4)/B92-SQRT((0.5-(B3-B11-B4)/B92)"2+2*B3/B9I"2)
[ 23 |vFD 5.7392
[ 24 |vFs 12.2631
[ 25 D 6.0924
26 |vLs 8.2585
27 |A1Fs 0.0132 (B24*(B19-B17)*(B230B22)/(B11+B4)+B23*B15*(B247B22)/(B11+B4))/(B21*B34)
28 |A2FD 1034.8147 -(B24*(B19-B17)*(B237B21)/(B11+B4)+B23*B15* (B24B21)/(B11+B4))/(B22*B34)
|29 ]|A1Lss 0.0385 (B24/(B11+B4)-B6/B3)*(B18-B16)*(B241(-B21))
[30]A1Ls 0.1412 ((B26*(B16-B12)/(B11+B4)+B21*B29*(B26AB21))*(B25AB22)+B25*B12*(B26/B22)/(B11+B4))/(B21*B35)
31 |A2LD 862.9820 (-((B26*(B16-B12)/(B11+B4)+B21*B29*(B267B21))*(B25~B21))-B25*B12*(B26/B21)/(B11+B4))/(B22
[ 32]A1Fss 0.1252 (B17-B13)*(B26/(B11+B4)-B5/B3)*(B25/B22)/B35-(B15-B13)*(B25/(B11+B4)-B5/B3)* (B26/B22)/B35
33 |A2FDD -643.7031 -(B17-B13)*(B26/(B11+B4)-B5/B3)*(B25AB21)/B35+(B15-B13)*(B25/(B11+B4)-B5/B3)*(B26~B21)/B3
34 | Delta_F 12.7542 (B247B21)*(B237B22)-(B247B22)*(B231B21)
35 | Delta_L 3.4744 (B26/B21)*(B257B22)-(B267B22)*(B25AB21)
[36]v 7.0000
| 37 |F Value 11.4606 IF(B36>=B24,B39,IF(AND(B36<B24,B36>=B26),B40,IF(AND(B36<B26,836>=B25),B41,IF(AND(B36<B25,836>=B23),B42,B843
[ 38|L value 26.8916 IF(B36>=B24,B44,IF(AND(B36<B24,B36>=B26),B45,IF(AND(B36<B26,836>=B25),846,847)))
[39|F I Row 7.5000 B19*(B36/(B4+B11)-B6/B3)-(B8-B10*B7)
[ 40 [F 2 Row 20.0327 B17*(B36/(B4+B11)-B5/B3)+B27*(B367B21)+B28*(B36"B22)
[ 41 |F 3 Row 11.4606 B13*(B36/(B4+B11)-B5/B3)+B27*(B367B21)+B28*(B367B22)+B32*(B367B21)+B33*(B367B22)
[ 42 |F 4 Row 9.4077 B15*(B36/(B4+B11)-B5/B3)+B27*(B367B21)+B28*(B367B22)
[ 43 |F 5 Row 5.0000 B7*B10
| 44 [L 1 Row 37.5000 B18*(B36/(B4+B11)-B6/B3)
[ 45 |L 2 Row 25.0375 B16*(B36/(B4+B11)-B6/B3)+B29*(B36B21)-(B8-B7)
46 |L 3 Row 26.8916 B12*(B36/(B4+B11)-B5/B3)+B30*(B36°B21)+B31*(B36"B22)
[47]L 4 Row 25.0000 B7
[ 48 |F 1 Term1 37.5000 B19*(B36/(B4+B11)-B6/B3)
| 49 |F 1 Term2 -30.0000 -(B8-B10*B7)
[ 50 [F 2 Terml -14.3750 B17*(B36/(B4+B11)-B5/B3)
[51|F2Term2 s 1.0814 B27*(B36°B21)
| 52 [F 2 Term3 D 33.3263 B28*(B36”B22)
| 53 |F 3 Terml -12.5000 B13*(B36/(B4+B11)-B5/B3)
[ 54 |F3 Term2 s 1.0814 B27*(B36°B21)
[ 55 |F 3 Term3 D 33.3263 B28*(B36"B22)
| 56 |F 3 Term4 s 10.2834 B32*(B36/B21)
[57|F3 Terms DD -20.7305 B33*(B36B22)
| 58 |F 4 Terml -25.0000 B15*(B36/(B4+B11)-B5/B3)
[ 59 |F 4 Term2 s 1.0814 B27*(B36°B21)
| 60 |F 4 Term3 D 33.3263 B28*(B36°B22)
[ 61 |F 5 Row 5.0000 B7*B10
[62|L 1 Term1 37.5000 B18*(B36/(B4+B11)-B6/B3)
[ 63 |L 2 Term1 31.8750 B16*(B36/(B4+B11)-B6/B3)
| 64 L2 Term2 SS 3.1625 B29*(B367B21)
| 65 [L 2 Term 3 -10.0000 -(B8-B7)
[ 66 |L 3 Term1 -12.5000 B12*(B36/(B4+B11)-B5/B3)
[ 67 |L3 Term2 S 11.5992 B30*(B36"B21) 31
68 |L 3 Term3 D 27.7924 B31*(B36"B22)
|69 |L 4 Row 25.0000 B7




Appendix B Derivation of Joint Solution

The follower’s value-matching relationships can be expressed as:

D

A Flry

-D

B B VEs
[VFIS vFg‘J[AlFS ]_ o+0 r
SB B N ;
Vo Vip N\ Aarp D Flo.xVrp N DF\O,Xf X

A7 —
o+6 r

s0, the solutions for the two option coefficients are given by:

Frx DF\Y,YfY _DF\Y,XfX —(K —lZ)

) 5 DF‘Y,Y_DF‘Y,X _DF\Y,YfY _DF\Y,XfX —(K—lZ)
(AIFS j_[viéls Vﬁi‘} . 6+0 r
A4, ﬁfj‘D v,/j}, 17— DF‘O,X‘A’FD N DF\O,XfX
o+40 r
) _ﬁ 5 DF\Y,Y_DF\Y.X_ F\YYfY F‘YXfX (K—/‘LZ)
AL o+0 r
vﬁg 17— Dp‘o,x{}FD n DF\O,XfX
A, o+40 r ’
4 v 5 Dpyy ~Pryx  Dpyr ~Dpyxf —(K-2Z)
HP AL o+0 r
vﬁ‘s 17— DF‘O,X‘;FD n DF\O,XfX
- o+40 r )
where A, = VAVE —php0

The associated smooth-pasting conditions are:

DF\Y,Y - DF\Y,X
[ﬁlvm' iR ][ s ]z 5+6
ﬂlvFDl ﬂzVFD Ay 3 M ,
o+6
s0, the solutions for the two option coefficients are given by:
~ DF\Y,Y - DF\Y,X
[AIFS j (ﬂlVFS ﬂz‘;ﬁgJ 'rs o+6
Ay B, BV . D Flo.x ’
"5+
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b

(B1)

(B2)

(B3)

(B4)

(B3)

(B6)



D
Flo,x o8

vFD FD 5+9 FS |’

1 N DF\Y,Y _DF\Y,X B A
Aps = Vrs +
BA, o+0
(B7)
1 A DF\y,y _DF\Y,X B A DF\O,X 5,
Ayp = BA, “Vrs 5+0 Vep T Vip Vrs |-

The two solutions for 4,,, 4,,, yield the following two non-linear simultaneous equations for the

unknown follower’s thresholds Vg, V) :
v,y _DF\Y,X S -1 _ DF\Y,YfY _DF\Y,XfX —(K—ZZ)J

DF
Vb | Vrs
o+0 B r
BS
[ 1, Proxm f-1 Droxfx .
= VFS /IZ - + >
o+0 B r
o [ Doy =Py fy=1 Pryry =Dpy/ —(K-27)
FD FS 5+9 ﬂz 7
B9
5 DyoxVin B, =1 DroxSx >
=V | AZ - + .
o+6 B, r

The leader’s value-matching relationship can be expressed as:
-D D, .f—-D, .f
lv.x LIX. X Ly, xJY Lix, xJ X ~B
- + A5 st_(K_Z)

D,
[‘;515‘ ‘A’féj(AlLs ]: s o+60 r
{}le ‘;2312) A2LD DL‘X,X‘;LD n DL\X,XfX ’
o+6 r

(B10)

so, the solutions for the two option coefficients are given by:
D, . —D D, .f,—-D, .f
A Ly, X Lx,x Ly xJY Lix.xJ X AR
— + A5V —(K—2Z)

A ~ -1{ v
[AILS ]:(Vg Vf;j LS o+0 r
45 ‘;Lﬂb ‘;Lﬁé 3 D L\X,X‘;LD D L\X,Xf X
o+60 7
(B11)
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5ps D, .—D D . f— f
A1LS Vip VLS LY. x Lxx  Lyx/Y L\X xXJx + A1LSS ‘;g (K —Z)
A, o0+40 r
Vf; 7_ DL\X,X‘;LD N DL\X,XfX
A, 5+6 r ’
(B12)
o] D, ..—D D . f - f
AzLD _ _Vip VLs LY. X Lxx  uyxJy L\XX X +A1LSS ‘;L'B'S (K—Z)
A, o+40 r
L ois vLﬁ‘S 7_ DL\X,X‘;LD N DL\X,XfX
A, 5+0 r ’
where A, =vAV%E —yRph (B13)
The associated smooth-pasting conditions are:
DL\Y,X o DL\X,X 61
| B, ———————+ B4, Vis
(ﬂleS 2Vis j( 1LS j_ o+6 (B14)
ﬂﬂ’w 1 Boviny vy N\ A B DL\X,X
o+6
s0, the solutions for the two option coefficients are given by:
D -D
A 5P ‘;LS drx e +IBIA1LSS ‘;ﬁ?
( 1LS J (ﬂleS ﬁzVLS) o+60 (B15)
Ay B Bovi - DL\X,X
P s5+0
4 = 1 5 DL\Y,X _DL\X,X 'y 5 vﬁz v, DL\X,X 5
1LS BA, LS 5+0 1“4Lss Vis P s B
(B16)

1 A DL\Y,X _DL\X,X " DL\XX A
Ayp = E(_[VLS T"' BiA s Vf:l? vLﬂID ~Vip WVL@

The two solutions for 4, 4,,,, yield the following two non-linear simultaneous equations for the

unknown follower’s thresholds v, ¢, v,
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5, | A DL\Y,X _DL\X,X B -1 DL\Y,XfY_DL\X,XfX
vV — -(K-2)
5+0 B, r
5, DL\X,X{}LD B -1 Dyxxfy
=Vl £~ + ,
o+60 B r
(B17)
D, . -D 1 D, f,-D,. .f B
‘;Lﬂ]D ‘;LS LY. X LlX.X ﬂ2 Ty xJy Lix.xJ X +A1LSS VL'B'S ﬂz ,31 —(K—Z)
o+0 B, r B,
~B, DL\X,X‘;LD ﬂ2—1 DL\X,XfX
=vy| Z— + .
o+60  p r
The coefficients A g, 4,7pp can be expressed as:
DF\Y,X _DF\X,X 5 _ DF\Y,X _DF\X,X f
[\A}g \A/Lﬂ_éJ[Awss J: o+6 s r X . (B18)
‘;510 ‘;Lﬂzz) Ay ppp DF\O,X _DF\X,X o _DF\O,X _DF\X,X f
LD X
o+0 r
Then:
Vis S
i oy (Do D) 5L
[AIFSS j:(vf]s Vfé} ( A F‘X’X) o+6 r (B19)
AZFDD {}LﬁlD ‘/}Lﬂlzj ( D -D ) ‘;LD _f_X
Flo,.x Flx,x S+0 r
A —(D -D ) Vs _Jfx ﬁ_(D D ) Vo Sy )V
1Fss — \ Fr.x FIX.X S+0 r AL Flo.X FIX.X S+0 r AL ’
A y s B2
(D, - Vs Sy \Vib _ Vi Sa Vs
Ay pp = (DF\Y,X DFX,X)(5+9 - jAL +(DF\0,X DFX,X)(5+9 , jAL :
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Appendix C Sensitivity of a 1% Increase in the Base Inputs on the VFs Across v Range

R3 R3 R3 R3 R2 R2 R2 R2 R2 R2 R2 R2

v 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 115 12 MEAN STDEV MAX MIN

VFF 7.89 11.46 15.51 19.97 23.28 25.35 27.76 30.45 33.37 36.50 39.79 43.23 26.21 1115 43.23 7.89
ArF 0.10 0.08 0.06 0.04 -0.15 -0.10 -0.06 -0.02 0.02 0.05 0.09 0.11 0.02 0.08 0.11 -0.15
Cl -0.23 -0.30 -0.36 -0.43 -0.13 -0.18 -0.23 -0.28 -0.33 -0.38 -0.43 -0.47 -0.31 0.11 -0.13 -0.47
X -0.08 0.00 0.09 0.18 0.05 0.02 0.00 -0.02 -0.02 -0.02 -0.02 -0.01 0.01 0.07 0.18 -0.08
fy -0.08 -0.12 -0.16 -0.20 -0.05 -0.05 -0.06 -0.07 -0.08 -0.09 -0.11 -0.12 -0.10 0.04 -0.05 -0.20
A 0.04 0.06 0.07 0.09 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.02 0.09 0.04
K -0.22 -0.35 -0.47 -0.60 -0.13 -0.15 -0.18 -0.20 -0.23 -0.26 -0.29 -0.33 -0.28 0.14 -0.13 -0.60
AcF 0.09 0.06 0.03 0.00 0.15 0.14 0.13 0.11 0.09 0.07 0.04 0.02 0.08 0.05 0.15 0.00
A 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.04 0.00 0.05 0.04
ASF -0.17 -0.22 -0.27 -0.32 -0.10 -0.14 -0.18 -0.21 -0.25 -0.29 -0.32 -0.35 -0.24 0.08 -0.10 -0.35
D L/XX 0.00 0.02 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.00
DL/YX 0.10 0.16 0.23 0.30 0.09 0.08 0.06 0.05 0.04 0.03 0.02 0.01 0.10 0.09 0.30 0.01
AL/YYF 0.01 -0.02 -0.05 -0.08 -0.27 -0.32 -0.38 -0.44 -0.50 -0.57 -0.63 -0.71 -0.33 0.25 0.01 -0.71
AvF 0.43 0.54 0.64 0.75 0.32 0.41 0.49 0.57 0.64 0.71 0.78 0.85 0.59 0.16 0.85 0.32
VFL 25.41 26.89 29.24 32.29 35.89 39.61 43.37 47.18 51.05 54.97 58.93 62.96 42.32 12.82 62.96 25.41
Arl 0.03 0.08 0.12 0.16 0.18 0.19 0.20 0.20 0.21 0.22 0.22 0.23 0.17 0.06 0.23 0.03
Cl -0.07 -0.16 -0.25 -0.33 -0.39 -0.42 -0.45 -0.47 -0.50 -0.53 -0.56 -0.59 -0.39 0.16 -0.07 -0.59
X -0.01 -0.02 -0.01 0.01 0.03 0.03 0.04 0.04 0.04 0.05 0.05 0.06 0.03 0.03 0.06 -0.02
fY -0.03 -0.06 -0.09 -0.12 -0.14 -0.14 -0.15 -0.15 -0.16 -0.16 -0.17 -0.17 -0.13 0.05 -0.03 -0.17
z 0.24 0.24 0.24 0.25 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.25 0.01 0.26 0.24
K -0.07 -0.17 -0.26 -0.35 -0.42 -0.42 -0.43 -0.44 -0.46 -0.47 -0.48 -0.49 -0.37 0.14 -0.07 -0.49
Aol 0.02 0.03 0.02 -0.01 -0.03 -0.04 -0.05 -0.06 -0.07 -0.08 -0.10 -0.11 -0.04 0.05 0.03 -0.11
A 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00
ASL -0.05 -0.12 -0.19 -0.25 -0.29 -0.31 -0.34 -0.36 -0.38 -0.40 -0.42 -0.44 -0.30 0.12 -0.05 -0.44
D L/XX -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01
DL/YX 0.02 0.05 0.08 0.11 0.12 0.11 0.09 0.08 0.06 0.03 0.01 -0.02 0.06 0.04 0.12 -0.02
AL/YYL 0.04 0.10 0.15 0.20 0.25 0.28 0.32 0.36 0.40 0.44 0.49 0.54 0.30 0.16 0.54 0.04
AvL 0.14 0.28 0.42 0.55 0.63 0.67 0.72 0.77 0.82 0.87 0.92 0.97 0.65 0.26 0.97 0.14

Note that while the VF of both the F and L are sensitive to changes in the quantity decline rate 0,

K and L/YY, and the VF L is sensitive to changes in the salvage value Z, these factors are left for

further research.
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Appendix D1 Complete Sensitivities of the Value Functions at v=7.5

7.5 Sensitivities r [¢] X fy z K [ A 8
R3,v=7.5 Panel A
VFD -0.39% 0.43% 0.82% 0.04% 0.03% 0.11% -0.43% 0.03% 0.32%
vLD -0.24% 0.58% 0.14% 0.20% 0.07% 0.59% -0.22% -0.01% 0.44%
A2FD 2.18% -0.48% 2.50% 0.05% 0.09% 0.14%  -4.02% 0.09%  -0.36%
A2LD 2.94% -0.28% 1.19% 0.27% 0.49% 0.82% -4.03% -0.01% -0.21%
A2FDD -1.99% 0.75% -3.71% 0.27% -0.24% 0.88% 4.46% 0.00% 0.56%
Panel B
VFS -0.87% 0.86% -0.51% 0.43%  -0.09% 1.23% 1.00% -0.09% 0.64%
vLS -0.39% 0.68% -0.30% 0.34% -0.12% 1.09% 0.34%  -0.01% 0.51%
AIFS 2.88% -6.23% 10.64% -3.39% 1.01% -9.39% -2.69% 1.01% -4.70%
AILS 3.63% -4.47% 2.40% -1.13% 0.91%  -3.40% 1.68% 0.04%  -3.37%
AI1FSS 0.67% -3.89% 4.33% -1.47% 0.65% -4.59% 2.34% 0.02% -2.93%
Panel C
VFF 15.51 0.41%  -2.35% 0.57% -1.00% 0.48%  -3.02% 0.21% 0.27% -1.77%
F3Terml -8.93 6.93% -3.41% -7.00% 0.00% 0.00% 0.00% 0.00% 0.00%  -2.56%
F3Term2S 1.26 0.32% -4.07% 10.64% -3.39% 1.01% -9.39% -5.41% 1.01% -3.07%
F3Term3D 29.50 -3.34% 1.29% 2.50% 0.05% 0.09% 0.14% 0.72% 0.09% 0.97%
F3Term4SsS 12.02 -1.83% -1.68% 4.33% -1.47% 0.65% -4.59% -0.53% 0.02%  -1.26%
F3Term5DD -18.35 3.51% -1.02% -3.71% 0.27%  -0.24% 0.88% -0.27% 0.00% -0.76%
VFL 29.24 0.41%  -0.85% -0.02% -0.30% 0.83% -0.89% 0.06% 0.01% -0.64%
L3Terml -8.93 6.93% -3.41% -7.00% 0.00% 0.00% 0.00% 0.00% 0.00%  -2.56%
L3Term2S 13.56 1.06% -2.28% 2.40% -1.13% 0.91% -3.40% -1.16% 0.04% -1.71%
L3Term3D 2461 -2.61% 1.49% 1.19% 0.27% 0.49% 0.82% 0.71% -0.01% 1.12%
Panel D Absolute Change
VFF 15.51 0.06 -0.36 0.09 -0.16 0.07 -0.47 0.03 0.04 -0.27
F3Terml -8.93 0.62 -0.30 -0.63 0.00 0.00 0.00 0.00 0.00 -0.23
F3Term2S 1.26 0.00 -0.05 0.13 -0.04 0.01 -0.12 -0.07 0.01 -0.04
F3Term3D 29.50 -0.98 0.38 0.74 0.01 0.03 0.04 0.21 0.03 0.29
F3Term4SsS 12.02 -0.22 -0.20 0.52 -0.18 0.08 -0.55 -0.06 0.00 -0.15
F3Term5DD -18.35 0.64 -0.19 -0.68 0.05 -0.04 0.16 -0.05 0.00 -0.14
VFL 29.24 0.12 -0.25 -0.01 -0.09 0.24 -0.26 0.02 0.00 -0.19
L3Terml -8.93 0.62 -0.30 -0.63 0.00 0.00 0.00 0.00 0.00 -0.23
L3Term2S 13.56 0.14 -0.31 0.33 -0.15 0.12 -0.46 -0.16 0.01 -0.23
L3 Term3 D 24.61 -0.64 0.37 0.29 0.07 0.12 0.20 0.17 0.00 0.27

Appendix D2 Complete Sensitivities of the Value Functions at v=9.5

9.5 Sensitivities r [:] X fy z K c A [

R2,v=9.5 Panel A

VFD -0.39% 0.43% 0.82% 0.04% 0.03% 0.11% -0.43% 0.03% 0.32%

A2FD 2.18% -0.48% 2.50% 0.05% 0.09% 0.14%  -4.02% 0.09%  -0.36%

Panel B

VFS -0.87% 0.86%  -0.51% 0.43%  -0.09% 1.23% 1.00%  -0.09% 0.64%

AIFS 2.88% -6.23% 10.64% -3.39% 1.01% -9.39%  -2.69% 1.01% -4.70%

AI1LSS 4.33% -4.34% 0.56%  -0.64% 0.10% -1.33% 2.48% 0.10%  -3.27%

Panel C Percentage Change
VFF 23.28 -0.66% -0.57% 0.22%  -0.19% 0.17%  -0.54% 0.64% 0.17%  -0.43%
F 2 Terml -2.05 -34.65% 19.32%  35.00% 0.00% 0.00% 0.00% 0.00% 0.00%  14.51%
F2Term2 S 1.68 0.17% -3.94% 10.64% -3.39% 1.01% -9.39%  -5.58% 1.01%  -2.96%
F2 Term3 D 23.65 -3.67% 1.40% 2.50% 0.05% 0.09% 0.14% 1.02% 0.09% 1.05%
VFL 35.89 0.51% -1.09% 0.08% -0.38% 0.71% -1.16% -0.08% 0.01% -0.82%
L 2 Terml 40.98 0.26% -0.72% 0.00%  -0.26% 0.00% 0.00% 0.00% 0.00%  -0.54%
L2 Term2 SS 4.91 1.58% -2.01% 0.56%  -0.64% 0.10% -1.33% -0.57% 0.10%  -1.51%
L2 Term 3 -10.00 0.00% 0.00% 0.00% 0.00% 2.50% -3.50% 0.00% 0.00% 0.00%

Panel D Absolute Change
VFF 23.28 -0.15 -0.13 0.05 -0.05 0.04 -0.13 0.15 0.04 -0.10
F 2 Terml -2.05 0.71 -0.40 -0.72 0.00 0.00 0.00 0.00 0.00 -0.30
F2Term2 S 1.68 0.00 -0.07 0.18 -0.06 0.02 -0.16 -0.09 0.02 -0.05
F 2 Term3 D 23.65 -0.87 0.33 0.59 0.01 0.02 0.03 0.24 0.02 0.25
VFL 35.89 0.18 -0.39 0.03 -0.14 0.26 -0.42 -0.03 0.01 -0.29
L 2 Terml 40.98 0.11 -0.29 0.00 -0.11 0.00 0.00 0.00 0.00 -0.22
L2 Term2 SS 4.91 0.08 -0.10 0.03 -0.03 0.01 -0.07 -0.03 0.01 -0.07
L2 Term3 -10.00 0.00 0.00 0.00 0.00 0.25 -0.35 0.00 0.00 0.00
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D L/XX

0.00%
0.06%
0.00%
0.69%
-1.08%

0.00%
-0.07%
0.00%
-0.64%
1.13%

0.17%
1.00%
0.00%
0.00%
1.13%
-1.08%
-0.02%
-1.00%
-0.64%
0.69%

0.03
0.09
0.00
0.00
0.14
-0.20
-0.01
-0.09
-0.09
0.17

D L/XX

0.00%
0.00%

0.00%
0.00%
0.00%

0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

DL/YX

-0.07%
-0.17%
-0.08%
-0.24%
-0.51%

0.30%
-0.43%
5.82%
1.02%
2.29%

1.48%
0.00%
5.82%
-0.08%
2.29%
-0.51%
0.27%
0.00%
1.02%
-0.24%

0.23
0.00
0.07
-0.02
0.27
-0.09
0.08
0.00
0.14
-0.06

DL/YX

-0.07%
-0.08%

0.30%
5.82%
-5.98%

0.40%
-0.74%
5.82%
-0.08%
0.32%
1.00%
-5.98%
0.00%

0.09
0.02
0.10
-0.02
0.12
0.41
-0.29
0.00

DL/YY

0.24%
-0.33%
0.30%
-0.46%
-0.03%

1.41%
-0.28%
-20.28%
1.94%
1.03%

-0.33%
0.00%
-20.28%
0.30%
1.03%
-0.03%
0.51%
0.00%
1.94%
-0.46%

-0.05
0.00
-0.26
0.09
0.12
-0.01
0.15
0.00
0.26
-0.11

DL/YY v

0.24%
0.30%

1.41%
-20.28%
5.03%

-1.16%
0.00%
-20.28%
0.30%
0.69%
0.00%
5.03%
0.00%

-0.27
0.00
-0.34
0.07
0.25
0.00
0.25
0.00

v
7.575

4.16%
6.00%
2.28%
-1.74%
2.28%
1.74%
1.42%
6.00%
2.28%
-1.74%

0.64
0.54
0.03
-0.51
0.27
0.32
0.42
0.54
0.31
-0.43

8.585

1.39%
-34.00%
2.28%
-1.74%
1.75%
1.26%
2.28%
0.00%

0.32
0.70
0.04
-0.41
0.63
0.52
0.11
0.00



Appendix E A & I" of the Leader and Follower Value Functions

A B [c] D
36 ]v 7.5
| 37 |Leader Divest VF v=7.5 29.2381  B12*(B36/(B4+B11)-B5/B3)+B30*(B36”B21)+B31*(B36"B22)
38 |oDE L3 0.0000  0.5%(B972)*(B3612)*BA40+(B3-B4-B11)*B36*B39-B3*B37+B12*(B36-B5)
396'w) 5.4472  B12*(1/(B4+B11)}+B30*B21*(B36/(B21-1))+B31*B22*(B36(B22-1))
40]6"(v) 2.8271  B30*B21*(B21-1)*(B367(B21-2))+B31*B22*(B22-1)*(B36(B22-2))
41]G(vLD) 25.0000  B12*(B25/(B4+B11)-B5/B3)+B30*(B25AB21)+B31*(B254B22)
42z 25.0000
43]sp 0.0000  B12*(1/(B4+B11)}+B30*B21*(B25A(B21-1))+B31*B22%(B25A(B22-1))
| 44 |Follower Divest VF v=6 5.2278  B15*%(B82/(B4+B11)-B5/B3)+B27*(B82/B21)+B28*(B82B22)
45 |oDE L4 0.0000  0.5%(B972)*(B8242)*B47+(B3-B4-B11)*B82*BA6-B3*BA4+(B82-B5)
46]G'w) 1.6995  B15*(1/(B4+B11))+B27*B21*(B82A(B21-1))+B28*B22%(B82A(B22-1))
47]6"(v) 59948  B27*B21*(B21-1)*(B827(B21-2))+B28*B22*(B22-1)*(B82A(B22-2))
| 48]G(vD) 50000  B15%(B23/(B4+B11)-B5/B3)+B27*(B237B21)+B28*(B23AB22)
| 49 |AZ 5.0000 B10*B7
[ 50]s 0.0000  B15*(1/(B4+B11)}+B27*B21*(B237(B21-1))+B28*B22%(B23A(B22-1))
|51 |Leader Switch VF v=9.5 53.3704  B16*(B83/(B4+B11)-B6/B3)+B29*(B83AB21)
52 |oDE L2 0.0000  0.5%(B972)*(B8312)*B54+(B3-B4-B11)*B83*B53-B3*B51+B16*(B83-B6)
53]6w) 7.5779  B16*(1/(B4+B11))+B29*B21*(B83A(B21-1))
546"(v) 0.2007  B29*B21*(B21-1)*(B83~(B21-2))
55 ]a(uLs) 341152  B16*(B26/(B4+B11)-B6/B3)+B29*(B26"B21)-(B8-B7)
56 v 341152 B12*(B26/(B4+B11)-B5/B3)+B30*(B267B21)+B31*(B267B22)
| 57 |sp 0.0000  B16*(1/(B4+B11))+B29*(B21)*(B26(B21-1))-(B12*(1/(B4+B11))+B30*B21*(B267(B21-1))+B31*B22*(B267(B22-1)))
| 58 |Follower Before L S/D 15.5103  B13*(B36/(B4+B11)-B5/B3)+B27*(B36/B21)+B28*(B36"B22)+B32* (B36/B21)+B33*(B36"B22)
59 |oDE v=7.513 0.0000  0.5%(B972)*(B3642)*B61+(B3-B4-B11)*B36*B60-B3*B58+B13*(B36-B5)
| 60 |G'(v) 8.5316  B13*(1/(B4+B11)}+B27*B21%(B36M(B21-1)}+B28*B22*(B36M(B22-1))+B32*B21*(B36/(B21-1))+B33*B22*(B36(B22-1))
| 61(G"(v) 1.6453  B27*B21%*(B21-1)*(B367(B21-2))+B28*B22*(B22-1)*(B36"(B22-2))+B32*B21*(B21-1)*(B36"(B21-2))+B33*B22*(B22-1)*(
62 |G(vLs) 224248  B17*(B26/(B4+B11)-B5/B3)+B27*(B26"B21)+B28*(B267B22)
63V 224248  B13*(B26/(B4+B11)-B5/B3)+B27*(B26"B21)+B28*(B267B22)+B32*(B26B21)+B33*(B26"B22)
| 64 |SP1 -6.3414  (B17-B13)/(B4+B11)-B32*B21*(B26"(B21-1))-B33*B22*(B26~(B22-1))
65 |GF(vLD) 54100  B15%(B25/(B4+B11)-B5/B3)+B27*(B25MB21)+B28*(B25AB22)
66 |v* 54100  B13*(B25/(B4+B11)-B5/B3)+B27*(B257B21)+B28*(B25AB22)+B32*(B254B21)+B33*(B25B22)
67 ]sp2 -3.3258  (B15-B13)/(B4+B11)-B32*B21*(B25M(B21-1))-B33*B22*(B25A(B22-1))
| 68 |Follower After L Switch 27.7577  B17*(B83/(B4+B11)-B5/B3)+B27*(B83AB21)+B28*(B83*B22)
69 |oDE L2v=9.5 0.0000  0.5%(B972)*(B8312)*B71+(B3-B4-B11)*B83*B70-B3*B68+B17*(B83-B5)
[70]cw) 51171  B17*(1/(B4+B11))+B27*B21*(B83A(B21-1))+B28*B22*(B83A(B22-1))
| 71]G"(v) 11202  B27*B21%(B21-1)*(B837(B21-2))+B28*B22*(B22-1)*(B83*(B22-2))
[ 72]6(vFs) 45.0932  B19%(B24/(B4+B11)-B6/B3)-(B8-B10*B7)
73 v 450932  B17%(B24/(B4+B11)-B5/B3)+B27*(B24"B21)+B28*(B24"B22)
[ 74]sp 0.0000  B17*(1/(B4+B11)}+B27*B21*(B247(B21-1))+B28*B22%(B247(B22-1))-(B19*(1/(B4+B11)))
| 75 |Leader After F Switch 76.7857  B18*(B84/(B4+B11)-B6/B3)
| 76 |ODE L1v=125 0.0000  0.5%(B972)*(B8412)*B78+(B3-B4-B11)*B84*B77-B3*B75+B18*(B84-B6)
77]6w) 7.1429  B18*(1/(B4+B11)
| 78 |G"(v) 0.0000  0.0000
[ 79]6(vFs) 75.0932  B18*(B24/(B4+B11)-B6/B3)
% 75.0932  B16*(B24/(B4+B11)-B6/B3)+B29*(B24~B21)
81sp 1.0096  (B16-B18)*(1/(B4+B11))+B29*B21*(B24A(B21-1))
82v 6.0000
183 |v 9.5000
84v 12.5000
85 [Follower After Switch L1 7.1429  B19*(1/(B4+B11))
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Appendix F Analytical and Numerical Vegas, v=7.5, 9.5

Differentiate the leader’s value function with respect to revenue v yields:

v, (v) .

e Dyyy 59 forv>v,
ov,, (v) 1 _ . .

=D ——+BA, V' forv, <v<v,.,
aVL (V) _ ov Ly X §+9 ﬂl 1LSS LS FS (Fl)
ov 1514 1

gv( ) L\XX§ 9+ﬂ1 1LSV +ﬂ2 2LDVﬁ21 forvLD<v<vLS
V() =0 forv<v,,.

ov

Differentiate the leader’s value function with respect to volatility o yields:

M =0 forv>v,
oo
ov,, (v 0A op . .
gi ) — vﬂ] ﬁ_{_AILSS Vﬂl log (V)a_(; for VLS S v< V}:‘s;
v, (v) 6VL3(V) 6A1LS op
- h +4,V" o ' F2
50- aO' aO' 1LS g( )ao_ ( )
o agz—aLD*Azw log (v) == /32 for v,, <v<v,
M =0 forv<vy,,.
oo

Differentiation of the leader’s value function with respect to the interest rate r yields:

6VL1(V) _D &

o~ Pura forv>v,
oV, . .
g(v) =Dy % Jr +vﬁl Oyss + Ay 55 v log (v ) ﬂl for v, <v<v,,
r r 0
oV, (v) _ Vi (v) /s ﬁ
= =D —Y+V lLS +A4 ..V lo 1 F3
or o L x 2 81’ 1LS g( ) o (F3)
+v~ Oy +4,,,v" log (v)% forv,, <v<v,
Fua(v) _ 0 forv<v,,.
or
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Differentiate the leader’s value function with respect to the yield o yields:

GVLI(V) v .
5 =—Dyyy 5107 forvzv,
ov,, (v v 04 op, . .
—Lai;( ):— YT +v/ 6'235 + Ay 55V log (v )8_51 forv,, <v<v,
ov, ov,
L(V): L3(V):_DLXX v - +h 8A1L5+A1LSV log( )aﬁl
o6 06 KX 5+0) 06 06
+vﬂzaAz—LD+A2LD > log (v ) ﬂz forv,, <v<v,
ov,
%:0 forv<v,,.
(F4)
Differentiate the follower’s value function with respect to v yields:

oy, (v) 1 -
F@lv = L forvzv,

Vs (v 1 -
1:’52\;( ) DF\YX5 0+ﬂ1 lFSV +ﬂ2 2FDv lforvLS<V<vFS’

oV, (v Vs (Vv 1
gv( ): ;}( ) F\XX§ 9+ﬁ1 lFSV T+ B4 2FDV T+ B 1Fssvﬁll + 5,4 2FDDV2 B forv,, <v<vg,

ov,,(v 1
F§4v( ) F\oxé» 9"',81 lFSV 45,4 2FDV 1forVFD<V<VLD

ov,

%(V):O forv<v,,.

(F5)

Differentiation of the follower's value function with respective to volatility yields:
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M:o forv=v,

oo
aVFZ (V) — OA, 5 VA 4 04,y rp VP
oo oo oo

+ A g VI log(v)%nL A,y V™ log(v)% for v,  <v<v,,

aVF3 (V) — aAlFS VA4 8AZFD v 4 aAlFSS VA aAzFDD VP

oo oo oo oo oo

av, (v oB B
%: + A g VP log(v)a—oi+A1FSS v/ log(v)a—oi
+ Ay oy v log (v) %i‘z + Ay VP log(v)% forv,, <v<vg,
aVF4 (V) — OA, 5 VA o4 04y rp VP
oo oo oo

+ A, vA log(v)%wLAZFD v log(v)% forv,, <v<v,,,

Vs (v)
oo

. F6
=0 forv<v,,. (Fé)

Differentiation of the follower's value function with respective to interest rate changes yields:

oV, (v) _D Iy

forv=v,

or Fly.Y (7‘)2

ov,
F2 (V) — DF\Y,X sz + 8A]Fs v 4 aAzFD VP
or (r) or or

A, VP log(v)%+ A, v log(v)% forv,, <v<v,,

Vs (v) =D, sz + OA, s - 04, Ve oy OA, s VA 04, rpp W
or T (r) or or or or
oV, (v op op,
g—r(): + A g VI log(v)a—rl+AlFSS v/ log(v)a—r1
+ Ay v log (V) 65,2 A, V" log(v)% forv,, <v<v,,,
aVF4 (V) =D fX + aAlFS v'B‘ + aAzFD Vﬂz
or X )2 or or
+ A, g VP log(v)%+ A, v log (v) aaﬂ: forv,, <v<v,,,
ov,
%:O forv<v,,.

(F7)
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Differentiation of the follower's value function with respective to conyield changes yields:

oV, (v v .
% = — Fyy (é‘_'_—gf forv > Vis
ov,
w2 (V) =D, v _+ OA, s - 04, VP
0o (6+6) 0o 0o
o 19) ; .
+ A g V™ log(v)a—ﬁl + Ay v log (V) 8% for v, <v<v.,
Vs (v) =-D, . . v —+ OA s VA 4 04, Ve 4 OA, pss VA 4 04, rpp Vo
05 Y s+0) 85 o5 o5 o8
oV, (v 0 0
(;5( ): + A g V™ Zog(v)§+A1FSS v/ Zog(v)g
+ Ay v log (v) aaﬁz + Ay pp V7 log (v) 6(;6)2 forv,, <v<v,,
r r
ov,
ra (V) =D,y v _+ OA, VA 4 04 Vo
oo (6+86) oo oo
0 %) . .
+ A g VP log (v) 8? + Ay VP log (v) 8,852 forv,, <v<v,,,
ov,
%(VLO forv<v,,.
(F8)
DELTA
The derivatives with respect to v=9.5 or 7.5 for the value function for the leader are:
ov,, (v 1
g;() =Dy 510" BA, vV =6.0714+1.5064 =7.5779,
1% ' +
(F9)
V5 (v) 1 fi-1 Bl -
———==D ——+ B A,V + B4, v =T.1429+4.0966-5.7922=5.4472

ov WX 540

The derivatives with respect to v=9.5 or 7.5 for the value function for the follower are:
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ov,
% FYX519+ﬂ1 sV BA, v =8.21434.5151-3.6123=5.1171 v=9.5
ov,
w5 (V) =D, 1
ov X540
7.1429+.3819-6.9456+3.6319+4.3206 =8.5316 v=7.5

1 Br-1_

+ B A g Vit Bodypp v T+ B A s Vit 4 By v

(F10)
VEGA
The derivatives with respect to ¢ =20% for the value function for the leader are:
v, (V) _ 2.2656 % 2.2656 _ _
=.4763v +.0385*-7.1127v LN(v)— 22.9924 forv=9.5
o}
or,
s (v) =1.1971v*%%¢ —17989y"76% (F11)
o

+.1412%=7.1127v***°LN (v) +10453v" LN (v) =8.2421 forv=7.5

The derivatives with respect to o =20% for the value function for the follower are:

aVFZ (V) - _ 1702V2,2656 _21519V—1.7656
oo

+.0132(-7.1 127)v2’2656LN(v)+ 1034(12.1227 )v " LN (v) =63.3195 forv=95

o,

g;(v) =—1702v** —.0936 v**** LN(v)+21519.10v™""* +12534.39v " LN (v) (F12)
o

+1.4598y*%% — 8903 v**** LN (v ) +14856.16v™ " = 7796.98v™ LN (v) =15.6286 forv="7.5

RHO

The derivatives with respect to r=8% for the value function for the leader are:

oV,
P v) _ 132.8125+2.0614v**° +.0385 % ~15.6974v***° LN (v) = 247.8524  for v=9.5,

or

oV
ﬂ =156.2500+6.3643v>** —2.2163v***°LN (v) (F13)

a

+31070.6485v™" 7% —29602.5303 v’1'7656LN(v) =-476.1200 for v=1.5

The derivatives with respect to r=8% for the value function for the follower are:
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v
GL(V) =179.6875+.4872v**%6 +27711.8476y"76%

or
- .2066v2'2656LN(v) —35496. 8416V_1'7656LN(V) =-797.2131 forv=9.5
ov,
—;3 (v) =156.2500+.48721** — 2066V** LN (v )+27711.8476v"7"° —35496.8416 v’1‘7656LN(v)
r

+1.0976v***° —1.9649v**** LN(v)—15850.7179 """ +22080.6935v™ LN (v) = -544.3535 forv=7.5

(F14)
EPSILON
The derivatives with respect to 6=3% for the value function for the leader are:
oV,
% =-823.9796 —4.2578v***° +1.0817v***° LN (v) =-1,123.035 for v=9.5,
o,
#(v) =-765.3061-16.1154v** +3.9676v****LN (v) (F15)

—6006.1197v""*" +18898.5553 v " LN (v) =—630.9151 for v=7.5

The derivatives with respect to 5=3% for the value function for the follower are:

oV
n(Y) =-1114.7959—345.4775v**¢ —231.2765y7"76%

+.3699v* LN (v)+22661.5433v" LN (v) = -596.631 forv="9.5
o,
s l¥) __765.3061-2.1053 +.3699 VLN (v)~12313.0468V 7 +22661.5433v LN (v)

~12.3804v** +3.5175v**** LN (v )+12007.2107v"""** ~14006.5386v""*LN (v) = -921.0211 for v=7.5

(F16)
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A B C D
79 |Partial Analytical LN(9.5) 2.2513
80 |8A1LS/dc 1.1971|8B1/8c -7.1127
81 |8A1LD/dc -17989.0420(532/6c 12.1127
82 [3A1FSS/6c 1.4598
83 |8A2FDD/dc 14856.1553
84 |8A1FS/8c -0.1702
85 [8A2FD/dc -21519.1000
86 [5A1LSS/dc 0.4763
87 [8VL2/60 -22.9914|B86*(B36”B22)+B30*D80*(B36"B22)*LN(B36)
88 |Numerical Derivative
89 |8A1LS/dc 1.1971|(C30-B30)/(C9-B9)
90 [3A1LD/8c -17989.0350|(C31-B31)/(C9-B9)
91 [3A1FSS/6c 1.4598(C32-B32)/(C9-B9)
92 [3A2FDD/dc 14856.1497 |(C33-B33)/(C9-B9)
93 [3A1FS/dc -0.1702(C27-B27)/(C9-B9)
94 [8A2FD/8c -21519.1406|(C28-B28)/(C9-B9)
95 [8A1LSS/dc 0.4763|(C29-B29)/(C9-B9)
96 [Num - Partial
97 [3A1LS/dc 0.0000|B88-B79
98 [3A1LD/6c 0.0070|B89-B82
99 [3A1FSS/6c 0.0000|B90-B81
100|8A2FDD/8c -0.0056|B91-B82
101|8A1FS/dc 0.0000|B92-B83
102|8A2FD/8c -0.0406|B93-B84
103|8A1LSS/8c 0.0000|B94-B85
104|R2
105[8VL2/80 -22.9914| B86*(B36"B22)+B30*D80*(B36"B22)*LN(B36)
106 78.16 | B86*(B36"B22)
107 (101.15)| B30*D80*(B36”B22)*LN(B36)
108 (22.9914)| SUM(B106:B107)
109|8VF2/86c 63.3195| B84*(B36”B22)+B85*(B36"B23)+B28*E22*(B36”B22)*LN(B36)+B29*E23*(B36"B23)*LN(B36)
110 -27.9290|B84*(B36"B22)
111 -404.1942|B85*(B36”B23)
112 -34.5880|B28*E22*(B36”B22)*LN(B36)
113 530.0306|B29*E23*(B36”B23)*LN(B36)
114 63.3195|SUM(B108:B111)
115|R3
116[8VL3/80 8.2421 | B80*(B70”7B22)+B31*D80*(B70"B22)*LN(B70)+B81*(B707B23)+B32*D81*(B70"B23)*LN(B70)
117[8VL3/80 8.2421 | SUM(B117:B120)
118 114.9880 | B80*(B70"B22)
119 (194.3569)| B31*D80*(B70”B22)*LN(B70)
120 (512.8980)| B81*(B707B23)
121 600.5090 | B32*D81*(B70*B23)*LN(B70)
122|8VF3/8c 15.6286 | 88a*(870°822)+B28* D80* (B8701B22) LN(B70)+885* (B707B23)+B29*D81* (B70°B23)*LN(B70) +B82*(B701B22)+B33* DBO* (B707B22)* LN(B70)+ B83* (B70°B23)+B34* D81*(B701B23)*LN(B70)
123 -16.3481| B84*(B707B22)
124 -18.1200| B28*D80*(B707B22)*LN(B70)
125 -613.5459| B85*(B707B23)
126 720.0794| B29*D81*(B707B23)*LN(B70)
127 140.2215| B82*(B70"B22)
128 -172.3093| B33*D80*(B707B22)*LN(B70)
129 423.5741| B83*(B707B23)
130 -447.9230| B34*D81*(B707B23)*LN(B70)
131 15.6286| SUM(B123:B130)
132|R4 6.0000|v
133[8VF3/60 20.1417| B84*(B132/B22)+B28*D80*(B1327B22)*LN(B132)+B85*(B132AB23)+B29* D81*(B132/B23)*LN(B132)
134 -9.8608| B84*(B132/B22)
135 - -9.7192| B28*D80*(B132”B22)*LN(B132)
136 -909.8042| B85*(B1327B23)
137 - 949.5259| B29*D81*(B132/B23)*LN(B132)
138 20.1417|SUM(B134:B137)
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Appendix G Literature Review of Some Competitive Real Option Portfolio Partial

Derivatives

Paxson & Pinto (2003) assume that market share reflects new customers entering (birth) at a rate
A and old customers departing (death) at a rate v, so the population size is asymmetrically
distributed at the rate p=A/v. The market yields a net revenue flow x with a constant drift and
volatility o, but is adjusted by a multiplier a*p, where a is the leader’s initial market share (IMS).
The value functions for the L and F are determined from value matching and smooth pasting
conditions. The option to invest in such a market project is sensitive to changes in o, shown in
Figure 12.1 (positive vega), and to changes in a and p in Figures 12.2/12.3. The value function of
the L is somewhat more complicated. In the next to last section, 12.3 these authors provide the
analytical partial derivatives of the VF to a (labelled MS A), p (labelled Ratio A),  (labelled vega)
and x (labelled A) for before and after x reaches the respective threshold for the L and F, along
with Excel diagrams showing MS A across a range of x revenues, Ratio A across a range of x, and

thresholds across a range of G.

BEPI(B-1)5+p(-1+(f\=ar+au))]  x , A
o, (x) (B, —)(ar-17 PR

0
¢ i for x, <x
o

X 4 X 4
| Bi( x*)ﬁ' Y (aBp( x*)ﬁ' 1
6VF(x): i g + 7/F for x < x,,

a .
gp for x,. <x

The discussion notes the opposite sensitivities of the VFs to changes in a, so “pre-emption is
obvious and seems to justify what is described in the literature as the fear of pre-emption.” Also,

the relative VF confirm “the adage, if you’re ahead, watch the competition.”

Tsekrekos (2003) shows the sensitivity of the L and F value functions to market share, assumed to
be constant after the F enters (exercises an investment opportunity). The market yields a net

revenue flow x with a constant drift and volatility s. The leader receives a x, where a is the leader’s
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initial market share, while the follower receives (1-a)x. The value functions for the L and F are
determined from value matching and smooth pasting conditions. There are analytical solutions for
the partial derivative of the value functions to a, along with diagrams of the market share

derivatives across a revenue range, before and after the F invests.

_@((l—a)(ﬁl—l)x
v, (x) | o BKS
da

) forx<x,,

x .
—-— forx,.<x
o

The author provides a page discussion regarding a: “an increase in a has an opposing effect on the
value for the L and F...a higher a value increases the market share the L retains after the F enters,
but also augments the period of time that the L earns monopolistic rents, by delaying the optimal

F entry.”

There are also analytical solutions for the partial derivative of the value functions to x, termed

delta, along with diagrams of the delta derivatives across a range of market shares a.

l_ ﬂlzK (1—a)(p—1)x 4 -
ov(x)_|s tp-ux' pks  OES
Ox a 3
— forx, <x
o

Following the conventional L-F pattern, the L delta is first a positive function of increasing x, until
before reaching the F threshold, it is negative, and then positive (and constant) after the threshold.
“Intuitively, the larger a, the more sensitive the VF L is to increasing x. The author does not
conclude that the L might encourage increasing x up to an optimum level x*, and for a while leave

encouraging further x increases to the F, who benefits more until the F threshold from x increases.
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